Characterization of steel slag by SEM-EDS, XRD, and INAA
DOI:
https://doi.org/10.15392/bjrs.v9i1A.1491Palabras clave:
REE, Fe3O4, INAA.Resumen
Steel slag is considered a by-product of the steel industry and its reuse is a strategy for environmental protection, since it consists of potential polluting materials. Its main applications involve the use of large quantities of the raw material, but the extraction of ores in smaller proportions can be attractive. For example, magnetite (Fe3O4) may be of great interest for its magnetic properties in the production of composites with different applications. On the other hand, rare earth elements (REE) production is vital for new technologies and since traces of the different REE are found in most iron ores, their extraction can be conducted together. However, previous characterization of the slag is necessary; since they vary in mineralogical composition conform to steelmaking operations. Classical characterization techniques of ores such as X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) may be limited to characterize small fractions of materials. Therefore, in this study, neutron activation analysis was used as the characterization technique to confirm the presence of iron and REE in the slag. The steel slag composite sample of the Linz-Donawitz (LD) process was collected in a steelwork localized in the Iron Quadrangle, Minas Gerais, Brazil. The steel slag sample was characterized by instrumental neutron activation analysis (INAA), using the nuclear research reactor TRIGA MARK I IPR-R1. The results are compared with the characterizations made with XRD and SEM-EDS. Although XRD and EDS results indicated the presence of magnetite in a small proportion, INAA was decisive confirming the presence of REE in the mineralogical composition of the composite sample collected.
Descargas
Referencias
KESSLER, W.; MULLER, G. Minor and trace-element data of iron oxides from iron-formations of the Iron Quadrangle, Minas Gerais, Brazil. Miner Petrol, v. 39, p. 245-250, 1988.
CARVALHO FILHO, A.; INDA, A. V.; FINK, J. R.; CURI, N. Iron oxides in soils of different lithological origins in Ferriferous Quadrilateral (Minas Gerais, Brazil). Appl Clay Sci, v. 118, p. 1-7, 2015.
CHAND, S.; PAUL, B.; KUMAR, M. Sustainable approaches for LD slag waste management in steel industries: a review. Metallurgist, v. 60, p. 116-128, 2016.
DAS, B.; PRAKASH, S.; REDDY, P. S. R.; MISRA, V. N. An overview of utilization of slag and sludge from steel industries. Resour Conserv Recy, v. 50, p. 40-57, 2007.
ZHANG, J. L.; WANG, Y.; JI, H.; WEI, Y. G.; WU, N. Z.; ZUO, B. J.; WANG, Q. L. Magnetic nanocomposite catalysts with high activity and selectivity for selective hydrogenation of ortho-chloronitrobenzene. J. Catal., v. 229, p. 114–118, 2005.
COLLIGAN, G.; COOK, C.; ERICKS, A. HOFF, R.; OLIVER, B. Iron Ore and Rare Earth Elements Market Interactions. Group: Iron Ore Diggers, 2016.
DING, Y.; WANG, J.; WANG, G.; XUE, Q. Innovative Methodology for Separating of Rare Earth and Iron from Bayan Obo Complex Iron Ore. ISIJ International, v. 52, p. 1772–1777, 2012.
YILDIRIM, Irem Zeynep; PREZZI, Monica. Geotechnical properties of fresh and aged basic oxygen furnace steel slag. J Mater Civil Eng, v. 27, n. 12, p. 04015046, 2015.
AIMOTO, M.; KANEHASHI, K.; FUJIOKA, Y. Analytical Technologies for steel slag. Nippon Steel & Sumitomo Metal Technical Report, v. 109, p. 16-22, 2015.
SROOR, A.; ABDEL-BASSET, N.; ABDEL-HALEEM, A. S.; HASSAN, A. M. Elemental analysis of two Egyptian iron ores and produced industrial iron samples by neutron activation analysis. Appl. Radiat. Isot., v. 54, n. 3, p. 559-562, 2001.
ALMEIDA, E.; ASSUNÇÃO, W.; OLIVEIRA, M. F.; MAIA, B. T.; GARAJAU, F. S.; GUERRA, M. S. L.; ANDRADE, W. M.; SILVA, W. M. New BOF Performance at Gerdau Ouro Branco by Slagless® Technology. 2017.
CARL ZEISS NTS. Sigma Field Emission Scanning Electron Microscope. Oberkochen, Germany, 2011. Available at: <http://www.iitk.ac.in/meesa/SEM/SEM_manual.pdf>. Last accessed: 22 June. 2020.
BRUKER. ESPRIT Compact Software for QUANTAX Microanalysis Systems. Bruker Nano GmbH, Berlin, Germany, 2017 Available at: <https://www.mse.ucr.edu/sites/g/files/rcwecm1241/files/2019>. Last accessed: 22 June. 2020.
JCPDS – Joint Committee on Powder Diffraction Standards. Powder Diffraction File. International Center for Diffraction Data-ICDD, Alphabetical Indexes, Sets 1-52, Pennsylvania, 2000.
DE CORTE, F. The k0-standardization method: a move to the optimization of neutron activation analysis. 1987. 463 f. Thesis, University of Gent, Belgium, 1987.
GREENBERG, R. R.; BODE, P.; FERNANDES, E. A. N. Neutron activation analysis: A primary method of measurement. Spectrochim. Acta B, v. 66, p.193-241, 2011.
MENEZES, M. A. B. C.; JACIMOVIC, R. Optimised k0-instrumental neutron activation method using the TRIGA MARK I IPR-R1 reactor at CDTN/CNEN, Belo Horizonte, Brazil. Nucl Instrum Methods Phys Res A, v. 564, p. 707-715, 2006.
HYPERLAB. Gamma Spectroscopy Software, HyperLabs Software. Budapest: Hyperlab, 1998–2013, 2009.
SIMONITS, A.; OSTOR, J.; KALVIN, S.; FAZEKAS, B. A new concept in gamma-ray spectrum analysis. J Radioan Nucl Chem, v. 257, p. 589-595, 2003.
KAYZERO FOR WINDOWS®. User’s Manual, for reactor neutron activation analysis (NAA) using the k0 standardisation method, Netherlands: Kayzero, 2011.
IRMM – Institute for Reference Materials and Measurements. Certified Reference Material BCR-320R, Certificate of Analysis, mass fraction in Channel Sediment, Belgium: IRMM, 2006.
DINALI, G. S.; RAIZ, R. A.; AMISTADI, M. K.; CHOROVER, J.; LOPES, G. GUILHERME, L. R. G. Rare earth elements (REY) sorption on soils of contrasting mineralogy and texture. Environ. Int., v. 128, p. 279-291, 2019.
POSTILA, H.; KARJALAINEN, S. M.; KLØVE, B. Can limestone, steel slag or man-made sorption materials be used to enhance phosphate-phosphorus retention in treatment wetland for peat extraction runoff with low phosphorous concentration? Ecol. Eng., v. 98, p. 403-409, 2017.
YILDIRIM, I. Z.; PREZZI, M. Geotechnical Properties of Fresh and Aged Basic Oxygen Furnace Steel Slag. J. Mater. Civ. Eng., v. 27(12), p. 1-11, 2015.
BATTSENGEL, A.; BATNASAN, A.; NARANKHUU, A.; HAGA, K.; WATANABE, Y.; SHIBAYAMA, A. Recovery of light and heavy rare earth elements from apatite ore using sulphuric acid leaching, solvent extraction and precipitation. Hydrometallurgy, v. 179, p. 100-109, 2018.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2021 Brazilian Journal of Radiation Sciences (BJRS)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Licencia: los artículos de BJRS tienen una licencia internacional Creative Commons Attribution 4.0, que permite el uso, el intercambio, la adaptación, la distribución y la reproducción en cualquier medio o formato, siempre que se otorgue el crédito correspondiente al autor o autores originales y a la fuente, proporcione un enlace a la licencia Creative Commons e indique si se realizaron cambios. Las imágenes u otros materiales de terceros en el artículo están incluidos en la licencia Creative Commons del artículo, a menos que se indique lo contrario en una línea de crédito al material. Si el material no está incluido en la licencia Creative Commons del artículo y su uso previsto no está permitido por la regulación legal o excede el uso permitido, el autor deberá obtener el permiso directamente del titular de los derechos de autor. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by/4.0/