Development and application of an approach for safety assessment of radioactive waste storage facilities for accidental scenarios
DOI:
https://doi.org/10.15392/bjrs.v9i1A.1330Palabras clave:
radioactive waste, safety assessment, accidents, SAFRAN, occurrence probabilityResumen
Worldwide there is a huge amount of radioactive waste, including disused sources, decommissioning waste, and naturally occurring radioactive material (NORM) waiting for final disposal, the so-called storage facilities. Results of safety assessment of such facilities are usually required in decision-making during design, modification, safety improvements, periodic safety reviews, and licensing activities. Quantitative safety assessment methodologies used in many areas of nuclear industry involves the evaluation of risk through the definition of scenarios, likelihoods, and consequences, for normal operation and accidents. There are many techniques that can be used in each one of these steps. For screening the accident scenarios, qualitative techniques such as failure modes and effect analysis (FMEA) are available. For a quantitative assessment of occurrence probabilities of undesired events, logical and graphical tools such as fault tree analysis (FTA) are employed. Consequence assessments involve the dose assessment in the workers and the impact of the released materials in the environment and of public exposure to radiation. This work analyzes the application of these traditional safety assessment approaches to storage facilities and how they can be applied to complement specific methodologies used in this area, such as the Safety Assessment Driving Radioactive Waste Management Solutions (SADRWMS), implemented in Safety Assessment Framework (SAFRAN) software tool, made available by International Atomic Energy Agency (IAEA).
Descargas
Referencias
CNEN - Comissão Nacional de Energia Nuclear. Licenciamento de depósitos de rejeitos radioativos de baixo e médio níveis de radiação. Norma CNEN NN 8.02, Rio de Janeiro: CNEN, 2014.
IAEA - International Atomic Energy Agency. Methodology for safety assessment applied to predisposal waste management. IAEA-TECDOC-1777, Vienna: IAEA, 2015.
CARLSON, C.S. Understanding and applying the fundamentals of FMEAs. In: ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM, 2014, Colorado Springs, CO, USA.
STAMATELATOS, M. Fault tree handbook with aerospace applications, version 1.1. Office of Safety and Mission Assurance. Washington: NASA Headquarters, Washington DC, USA, 2002a.
STAMATELATOS, M. Probabilistic risk assessment procedures guide for NASA managers and practitioners, version 1.1. Office of Safety and Mission Assurance. Washington: NASA Headquarters, Washington DC, USA, 2002b.
CALIXTO, E. Gas and oil reliability engineering. Modeling and analysis, Elsevier, Amsterdam: Netherlands, 2013.
USNRC - U.S. Nuclear Regulatory Commission, The SPAR-H human reliability analysis method. NUREG/CR-6883, Washington: USNRC, 2005.
USNRC - U.S. Nuclear Regulatory Commission, Recommendations for probabilistic seismic hazard analysis: guidance on uncertainty and use of experts, NUREG/CR-6372, Vols. 1 and 2, Washington: USNRC, 1997.
USNRC - U.S. Nuclear Regulatory Commission, Evaluations of explosions postulated to occur at nearby facilities and on transportation routes near nuclear power plants, Regulatory Guide 1.91, Revision 2, Washington: USNRC, 2013.
USNRC - U.S. Nuclear Regulatory Commission, Standard review plan for the review of safety analysis reports for nuclear power plants, LWR edition: design of structures, components, equipment, and systems. NUREG-0800, Chapter 3, Section 3.1.6 - Aircraft hazards, Washington: USNRC, 2010.
USNRC - U.S. Nuclear Regulatory Commission, Standard review plan for the review of safety analysis reports for nuclear power plants, LWR edition: design of structures, components, equipment, and systems. NUREG-0800, Chapter 3, Section 3.5.1.3 – Turbine missiles, Washington: USNRC, 2007.
USNRC - U.S. Nuclear Regulatory Commission, Evaluation of human reliability analysis methods against good practices, NUREG-1842, Washington: USNRC, 2006.
TOLENTINO, I.B. Desenvolvimento de um simulador dinâmico de análise de consequência para indústrias de processos. Tese de Doutorado (Engenharia Química) - Universidade Estadual de Campinas, Campinas: UNICAMP, 2015.
KWAG, S.; GUPTA, A. Probabilistic risk assessment framework for structural systems under multiple hazards using Bayesian statistics. Nuclear Engineering and Design, v. 315, p. 20-34, 2017.
VASCONCELOS, V.; ANDRADE, M.C.; JORDÃO, E. Use of risk assessment methods for security design and analysis of nuclear and radioactive facilities, In: INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE, Belo Horizonte: Comissão Nacional de Energia Nuclear, 2011.
USNRC - U.S. Nuclear Regulatory Commission. Feasibility study for a risk-informed and performance-based regulatory structure for future plant licensing, NUREG-1860, Vol. 1. Washington: USNRC, 2007.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2021 Brazilian Journal of Radiation Sciences (BJRS)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Licencia: los artículos de BJRS tienen una licencia internacional Creative Commons Attribution 4.0, que permite el uso, el intercambio, la adaptación, la distribución y la reproducción en cualquier medio o formato, siempre que se otorgue el crédito correspondiente al autor o autores originales y a la fuente, proporcione un enlace a la licencia Creative Commons e indique si se realizaron cambios. Las imágenes u otros materiales de terceros en el artículo están incluidos en la licencia Creative Commons del artículo, a menos que se indique lo contrario en una línea de crédito al material. Si el material no está incluido en la licencia Creative Commons del artículo y su uso previsto no está permitido por la regulación legal o excede el uso permitido, el autor deberá obtener el permiso directamente del titular de los derechos de autor. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by/4.0/