Comparing Deep Learning Architectures On Gamma-Spectroscopy Analysis For Nuclear Waste Characterization
DOI:
https://doi.org/10.15392/bjrs.v9i1A.1257Palabras clave:
gamma-spectroscopy analysis, deep learning,Resumen
Neural networks, particularly deep neural networks, are used nowadays with great success in several tasks, such as image classification, image segmentation, translation, text to speech, speech to text, achieving super-human performance. In this study, we explore the capabilities of deep learning on a new field: gamma-spectroscopy analysis, comparing the classification performance of different deep neural network architectures. We choose VGG-16, VGG-19, Xception, ResNet, InceptionV3, and MobileNet architectures, which are available through the Keras Deep Learning framework to identify several different radionuclides (Am-241, Ba133, Cd-109, Co-60, Cs-137, Eu-152, Mn-54, Na-24, and Pb-210). Using an HPGe detector to acquire several gamma spectra from different sealed sources to create a dataset used for the training and validation of the comparison of the neural network. This study demonstrates the strengths and weaknesses of applying deep learning on gamma-spectroscopy analysis for nuclear waste characterization.Descargas
Referencias
W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” Bull. Math. Biophys., 1943.
W. C. Contributors, “Neuron Hand-tuned.” [Online]. Available: https://commons.wikimedia.org/w/index.php?title=File:Neuron_Hand-tuned.svg&oldid=347708343.
R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsupervised learning using graphics processors,” 2009.
D. Cireșan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, “Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images,” in NIPS, 2012.
O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2015.
P. E. Keller and R. T. Kouzes, “Gamma spectral analysis via neural networks,” Proc. 1994 IEEE Nucl. Sci. Symp. - NSS’94, 1995.
P. E. Keller, L. J. Kangas, G. L. Troyer, S. Hashem, and R. T. Kouzes, “Nuclear Spectral Analysis via Artificial Neural Networks for Waste Handling,” IEEE Trans. Nucl. Sci., vol. 42, no. 4, pp. 709–715, 1995.
F. Rosenblatt, “The perceptron: A probabilistic model for information storage and organization in the brain,” Psychol. Rev., 1958.
G. H. Yann LeCun, Yoshua Bengio, “Deep learning,” Nat. Methods, 2015.
F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 1800–1807, 2017.
K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” pp. 1–14, 2014.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 770–778, 2016.
A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” 2017.
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception Architecture for Computer Vision,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 2818–2826, 2016.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2021 Brazilian Journal of Radiation Sciences (BJRS)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Licencia: los artículos de BJRS tienen una licencia internacional Creative Commons Attribution 4.0, que permite el uso, el intercambio, la adaptación, la distribución y la reproducción en cualquier medio o formato, siempre que se otorgue el crédito correspondiente al autor o autores originales y a la fuente, proporcione un enlace a la licencia Creative Commons e indique si se realizaron cambios. Las imágenes u otros materiales de terceros en el artículo están incluidos en la licencia Creative Commons del artículo, a menos que se indique lo contrario en una línea de crédito al material. Si el material no está incluido en la licencia Creative Commons del artículo y su uso previsto no está permitido por la regulación legal o excede el uso permitido, el autor deberá obtener el permiso directamente del titular de los derechos de autor. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by/4.0/