Analysis of the Relationship Between Absorbed Dose and Its Effect on Plant Materials: A Literature Review
DOI:
https://doi.org/10.15392/2319-0612.2025.2917Keywords:
phytotherapeutics, gamma radiation, secondary metabolitesAbstract
Gamma radiation has been widely explored as a physical elicitor capable of modifying plant metabolism. Its influence on the biosynthesis of secondary metabolites, which play key roles in defense, adaptation, and therapeutic action, has gained increasing interest in phytochemical and pharmacological research. This study aimed to systematically review the effects of gamma radiation on plant-derived secondary metabolites, highlighting dose-response relationships and potential biotechnological applications. A literature review was conducted using PubMed, SciELO, and BVS databases, focusing on studies published between 2019 and 2024. The search strategy included descriptors such as "gamma radiation," "secondary metabolites," and "plant materials." After applying eligibility criteria, 23 studies were selected. The studies revealed that gamma irradiation influences a wide range of secondary metabolites, including phenolics, flavonoids, terpenes, alkaloids, and saponins. Most results indicate that doses (5–100 Gy) tend to enhance the synthesis of bioactive compounds with antioxidant, antimicrobial, and anticancer properties. However, higher doses often lead to inhibitory or toxic effects. The response varied significantly across plant species and compound classes. Gamma irradiation presents great potential to optimize the production of high-value phytochemicals for therapeutic use. Nevertheless, the absence of standardized dose-response profiles and the limited understanding of molecular mechanisms highlight the need for further multidisciplinary research to ensure the safe and effective application of this technology in phytopharmaceutical development.
Downloads
References
[1] MSHELIA, P. W.; DIBAL, H. U.; CHIROMA, D. Food irradiation: A review of its applications, benefits and concerns. Environmental Science and Pollution Research, 2023.
[2] SOARES, I. G. M.; SANTOS, A. G. dos; SOARES, J. J. C.; ARAÚJO, L. A.; MAIA NETO, L. S.; SILVA, L. M.; AMARAL, A. J.; MAGNATA, S. S. L. P.; SILVA, E. B. da. Influência da radiação ionizante nos frutos de tomate (Lycopersicon esculentum Mill) da variedade TY 2006. Caderno Pedagógico, v. 21, n. 13, e11903, 2024. https://doi.org/10.54033/cadpedv21n13-180. DOI: https://doi.org/10.54033/cadpedv21n13-180
[3] LORO, A. C.; BOTTEON, V. W.; SPOTO, M. H. F. Quality parameters of tomatoes submitted to different doses of gamma radiation. Brazilian Journal of Food Technology, v. 21, e2017168, 2018. https://doi.org/10.1590/1981-6723.16817. DOI: https://doi.org/10.1590/1981-6723.16817
[4] ARAÚJO, L. A.; LIMA, C. E. P. F.; MELO, Alexciana Pereira; SILVA, Edvane Borges da. Gamma irradiation in different maturity stages of tomatoes (Lycopersicon esculentum mill.). European Academic Research, v. X, n. 8, p. 3114–3124, nov. 2022. Disponível em: www.euacademic.org.
[5] BHATNAGAR, P.; GURURANI, P.; BISHT, B.; KUMAR, V.; KUMAR, N.; JOSHI, R.; VLASKIN, M. S. Impact of irradiation on physico-chemical and nutritional properties of fruits and vegetables: A mini review. Heliyon, v. 8, p. e10918, 2022. Disponível em: https://doi.org/10.1016/j.heliyon.2022.e10918. DOI: https://doi.org/10.1016/j.heliyon.2022.e10918
[6] Ravindran R, Jaiswal AK. Wholesomeness and safety aspects of irradiated foods. Food Chem. 2019 Jul 1;285:363–8. doi:10.1016/j.foodchem.2019.02.002 DOI: https://doi.org/10.1016/j.foodchem.2019.02.002
[7] ZIN, MM; ANUCHA, CB; BÁNVÖLGYI, S. Recovery of Phytochemicals via Electromagnetic Irradiation (Microwave-Assisted-Extraction): Betalain and Phenolic Compounds in Perspective. Foods, v. 9, n. 918, 2020. Disponível em: https://doi.org/10.3390/foods9070918. DOI: https://doi.org/10.3390/foods9070918
[8] JADHAV, HB; ANNAPURE, US.; DESHMUKH, RR. Non-thermal Technologies for Food Processing. Frontiers in Nutrition, v. 8, 2021. Disponível em: https://doi.org/10.3389/fnut.2021.657090. DOI: https://doi.org/10.3389/fnut.2021.657090
[9] MURTHY, H. N.; JOSEPH, K. S.; PAEK, K. Y.; PARK, S. Y. Production of specialized metabolites in plant cell and organo-cultures: the role of gamma radiation in eliciting secondary metabolism. International Journal of Radiation Biology, v. 100, n. 7, p. 678-688, 2024. Disponível em: https://doi.org/10.1080/09553002.2024.2324469. DOI: https://doi.org/10.1080/09553002.2024.2324469
[10] TARIVERDIZADEH N, HOSSEINI SM, GHOLAMI M, ALIZADEH H. Response of Satureja hortensis L. to gamma radiation and its impact on secondary metabolite content and biochemical characteristics. International Journal of Radiation Biology, v. 99, n. 7, p. 1424-1432, 2023. Disponível em: https://doi.org/10.1080/09553002.2023.2173821. DOI: https://doi.org/10.1080/09553002.2023.2173821
[11] MUJIB A, KHAN M, ALI M, ALI H, AHMAD I, KHAN M. Gamma ray irradiation elicits secondary metabolite production in Catharanthus roseus embryogenic callus. Applied Microbiology and Biotechnology, v. 106, p. 6109–6123, 2022. DOI: 10.1007/s00253-022-12122-7.
[12] MUHALLILIN, I.; AISYAH, S. I.; SUKMA, D. The diversity of morphological characteristics and chemical content of Celosia cristata plantlets due to gamma ray irradiation. Biodiversitas, v. 20, n. 3, p. 862-866, 2019. DOI: 10.13057/biodiv/d200333. DOI: https://doi.org/10.13057/biodiv/d200333
[13] PARCHIN RA, SEIFI HS, AMANI S, GHORBANI M, ABBASPOUR H. Growth characteristics and phytochemical responses of Iranian fenugreek (Trigonella foenum-graecum L.) exposed to gamma irradiation. Industrial Crops & Products, v. 139, p. 111593, 2019. DOI: 10.1016/j.indcrop.2019.111593. DOI: https://doi.org/10.1016/j.indcrop.2019.111593
[14] MARIADOSS, A.; SATDIVE, R.; FULZELE, D. P.; RAMAMOORTHY, S. Enhanced production of anthraquinones by gamma-irradiated cell cultures of Rubia cordifolia in a bioreactor. Industrial Crops & Products, v. 145, p. 111987, 2020. DOI: 10.1016/j.indcrop.2019.111987. DOI: https://doi.org/10.1016/j.indcrop.2019.111987
[15] KHALIFA, A. M.; ABD-ELSHAFY, E.; ABU-KHUDIR, R.; GAAFAR, R. M. Influence of gamma radiation and phenylalanine on secondary metabolites in callus cultures of milk thistle (Silybum marianum L.). Journal of Genetic Engineering and Biotechnology, v. 20, p. 166, 2022. DOI: 10.1186/s43141-022-00424-2. DOI: https://doi.org/10.1186/s43141-022-00424-2
[16] HONG, M. J.; KO, C. S.; KIM, J.-B.; KIM, D. Y. Identification and transcriptomic profiling of salinity stress response genes in colored wheat mutant. PeerJ, v. 12, e17043, 2024. DOI: 10.7717/peerj.17043. DOI: https://doi.org/10.7717/peerj.17043
[17] EL-GARHY H A S, EL-METWALY N M, EL-KHAWAGA A M, ABOU EL-MAGD A M, MOSTAFA M E, EL-SHERBENY M A. Effect of gamma rays and colchicine on silymarin production in cell suspension cultures of Silybum marianum: A transcriptomic study of key genes involved in the biosynthetic pathway. Gene, v. 791, p. 145700, 2021. Disponível em: https://doi.org/10.1016/j.gene.2021.145700. DOI: https://doi.org/10.1016/j.gene.2021.145700
[18] SINGH, S.; SHARMA, V.; KUMAR, R.; RAGHUVANSHI, R.; CHANDRA, R. Gamma ray–induced tissue responses and improved secondary metabolites accumulation in Catharanthus roseus. Applied Genetics and Molecular Biotechnology, v. 106, p. 6109–6123, 2022. DOI: https://doi.org/10.1007/s00253-022-12122-7
[19] GAJBAR T D, PATEL K S, KHAN Z A, RAZA S, KHAN M M, HUSSAIN M I. Gamma-irradiated fenugreek extracts mediates resistance to rice blast disease through modulating histochemical and biochemical changes. Analytical Biochemistry, v. 618, p. 114121, 2021. Disponível em: https://doi.org/10.1016/j.ab.2021.114121. DOI: https://doi.org/10.1016/j.ab.2021.114121
[20] SILVA, A. B.; SOUZA, C. D.; OLIVEIRA, E. F. Influência da radiação gama na qualidade pós-colheita e metabolismo secundário da romã ‘Comum’. Revista Brasileira de Tecnologia Agroindustrial, v. 10, n. 3, p. 45-60, 2023.
[21] PAGLIARELLO, R.; BENNICI, E.; DI SARCINA, I.; VILLANI, M. E.; DESIDERIO, A.; NARDI, L.; BENVENUTO, E.; CEMMI, A.; MASSA, S. Effects of gamma radiation on engineered tomato biofortified for space agriculture by morphometry and fluorescence-based indices. Frontiers in Plant Science, v. 14, p. 1266199, 2023. DOI: 10.3389/fpls.2023.1266199. DOI: https://doi.org/10.3389/fpls.2023.1266199
[22] RIVIELLO-FLORES MDLL, SANTOS MCO, MARTÍNEZ-SÁNCHEZ F, GARCÍA-CORONADO MJ, PÉREZ-HERRERA L, LÓPEZ-MORENO A, et al. Use of Gamma Radiation for the Genetic Improvement of Underutilized Plant Varieties.Plants.2022;11(9):1161.Disponívelem:https://doi.org/10.3390/plants11091161. DOI: https://doi.org/10.3390/plants11091161
[23] ARSHADI, Z; HOSSEINI, SA; FATEHI, D; MIRZAEI, SA; ELAHIAN, F. Butylcycloheptylprodigiosin and undecylprodigiosin are potential photosensitizer candidates for photodynamic cancer therapy. Molecular Biology Reports, v. 48, p. 5965–5975, 2021. DOI: 10.1007/s11033-021-06621-2. DOI: https://doi.org/10.1007/s11033-021-06598-1
[24] CIOCAN AG, TUDOR C, CREȚU D, POPESCU D, RÂPĂ M, ANDRONESCU E . The Impact of Acute Low-Dose Gamma Irradiation on Biomass Accumulation and Secondary Metabolites Production in Cotinus coggygria Scop. and Fragaria × ananassa Duch. Red Callus Cultures. Metabolites. 2023 Aug 15;13(8):894. doi:10.3390/metabo13080894.Availablefrom:https://doi.org/10.3390/metabo13080894 DOI: https://doi.org/10.3390/metabo13080894
[25] KORDROSTAMI, M; SANJARIAN, F; SHAHBAZI, S; GHASEMI-SOLOKLUI, AK. Exploring low-dose gamma radiation effects on monoterpene biosynthesis in Thymus vulgaris: insights into plant defense mechanisms. Environmental Science and Pollution Research, v. 31, p. 32842–32862, 2024. Disponível em: https://doi.org/10.1007/s11356-024-30491-7. DOI: https://doi.org/10.1007/s11356-024-33269-y
[26] MADUREIRA J., DIAS M.I., PINELA J., CALHELHA R.C., BARROS L., SANTOS-BUELGA C., MARGAÇA F.M.A., FERREIRA I.C.F.R., CABO VERDE S. The use of gamma radiation for extractability improvement of bioactive compounds in olive oil wastes. Science of the Total Environment. 2020;746:138706. doi:10.1016/j.scitotenv.2020.138706. DOI: https://doi.org/10.1016/j.scitotenv.2020.138706
[27] HEYDARI, H. R.; CHAMANI, E.; ESMAIELPOUR, B. Carbon nanotubes elicitation enhanced phenolic compounds accumulation in Salvia nemorosa cell culture. Plant Cell, Tissue and Organ Culture (PCTOC), v. 142, p. 353–367, 2020. DOI: 10.1007/s11240-020-01830-w. DOI: https://doi.org/10.1007/s11240-020-01867-6
[28] ROSTAMI M, GHORBANI A, SHAHBAZI S. Gamma radiation-induced enhancement of biocontrol agents for plant disease management. Curr Res Microb Sci. 2024 Nov 7;7:100308. doi:10.1016/j.crmicr.2024.100308. DOI: https://doi.org/10.1016/j.crmicr.2024.100308
[29] KATIYAR, P.; PANDEY, N.; KESHAVKANT, S. Gamma radiation: A potential tool for abiotic stress mitigation and management of agroecosystem. Plant Stress, v. 5, p. 100089, 2022. DOI: 10.1016/j.stress.2022.100089. DOI: https://doi.org/10.1016/j.stress.2022.100089
[30] LE, K. C.; HO, T.; PAEK, K.; PARK, S. Low dose gamma radiation increases the biomass and ginsenoside content of callus and adventitious root cultures of wild ginseng (Panax ginseng Mayer). Industrial Crops and Products, v. 129, p. 631-639, 2019. DOI: 10.1016/j.indcrop.2018.12.056. DOI: https://doi.org/10.1016/j.indcrop.2018.12.056
[31] MAGDY AM, FAHMY EM, AL‑ANSARY AEMF, AWAD G. Improvement of 6‑gingerol production in ginger rhizomes (Zingiber officinale Roscoe) plants by mutation breeding using gamma irradiation. Appl Radiat Isot. 2020 Aug;162:109193. doi:10.1016/j.apradiso.2020.109193 DOI: https://doi.org/10.1016/j.apradiso.2020.109193
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 Mario Mardone da Silva, Ewerton Clementino Diniz, Luiz da Silva Maia Neto, Liderlanio de Almeida Araújo, Simey de Souza Leão Pereira Magnata, Ademir de Jesus Amaral, Andre Maciel Netto, Edvane Borges da Silva

This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/