Chemical characterization of ancient pottery from the south-west Amazonia using Instrumental Neutron Activation Analysis

Authors

  • Patricia Ramos Carvalho Instituto de Pesquisas Energéticas e Nucleares, Av. Professor Lineu Prestes 2242, 05508-000, São Paulo, SP, Brazil

DOI:

https://doi.org/10.15392/bjrs.v7i2A.619

Keywords:

instrumental neutron activation analysis, Amazonia, Monte Castelo.

Abstract

The analyzes carried out in this work aims to contribute to the discussion about the ceramic objects founded in Monte Castelo’s sambaqui located at south-west Amazonia. The first study accomplished by Miller in 1980 suggests that this archaeological site is inserted in the oldest contexts of production of ceramics in the Amazon. Until today, there aren't any physical and chemical analysis studies in this ceramics and this kind of studies may help archaeological studies performed at the sambaqui. With this purpose, this work presents a preliminary study of chemical characterization of eighty-four ceramic samples using instrumental neutron activation analysis (INAA) by means of the determination of Na, K, La, Sm, Yb, Lu, U, Sc, Cr, Fe, Co, Zn, Rb, Cs, Ce, Eu, Hf and Th. With the purpose to study the similarity/dissimilarity between the samples, cluster and discriminant analysis were used. The results showed the existence of three different chemical groups whose dating ranging 3000 b.P. to 1500 b.P. that are in agreement with the archaeological studies made by Miller and suggest Bacabal’s phase as the oldest ceramist culture in the Southwest of the Amazon.

 

Downloads

Download data is not yet available.

References

LIMA, T. A. Cultura material: a dimensão concreta das relações sociais. Boletim do Museu Paraense Emílio Goeldi Ciências Humanas, v. 6, p. 11-23, 2011.

VELDE, B.; DRUC, I. C. Archaeological ceramic materials: origin and utilization, Berlin: Springer, 1999.

WEIGAND, P. C.; HARBOTTLE, G.; SAYRE, E. V. Turquoise sources and source analysis: Mesoamerica and the Southwestern U.S.A, New York: Academic Press Inc., 1977.

GLASCOCK, M. D.; NEFF, H.; VAUGH, K. J. Instrumental neutron activation analysis and multivariate statistics for pottery provenance. Hyper Interact, v. 154, p. 95–105, 2004.

MUNITA, C. S. Contribuição da análise por ativação com nêutrons a estudos arqueométricos: estudo de caso. Canindé, v. 6, p. 159–181, 2005.

MINCL, L. D.; SHERMAN, R. J. Assessing natural clay composition in the valley of Oaxaca as a basis for ceramic provenance studies. Archaeometry, v. 53, p. 285–328, 2011.

MICHELAKI, K.; HANCOCK, R. G. V. Chemistry versus data dispersion is there a better way to assess and interpret archaeometric data. Archaeometry, v. 53, p. 1259-1279, 2011.

SÁNCHEZ, J. S.; TRINDADE, M. J.; ROTEA, R. B.; GARCIA, R. B.; MOSQUERA, D. F.; BURBIDGE, C.; PRUDÊNCIO, M. I.; DIAS, M. I. Chemical and mineralogical characterization of historic mortars from the Santa Eulalia de Bóveda temple, NW Spain. Journal of Archaeological Science, v. 37, p. 2346-2351, 2010.

HANCOCK, R. G. V.; CARTER, T. How reliable are our published archaeometric analyses? Effects of analytical techniques through time on the elemental analysis of obsidians. Journal of Archaeological Science, v. 37, p. 243–250, 2010.

SANTOS, J. O.; MUNITA, C. S.; TOYOTA, R. G.; VERGNE, C.; SILVA, R. S.; OLIVEIRA, P. M. S. The archaeometry study of the chemical and mineral composition of pottery from Brazil’s Northeast. Journal of Radioanalytical and Nuclear Chemistry, v. 281, p.189–192, 2009.

GLASCOCK, M. D.; NEFF, H. Neutron activation analysis and provenance research in archaeology. Measurement Science and Technology, v. 14, p. 1516–1526, 2003.

GLASCOCK, M. D.; SPEAKMAN, R. J.; NEFF, H. Archaeometry at the university of Missouri Research Reactor and the provenance of Obsidian arttefacts in Noth America. Archaeometry, v. 49, p. 343-357, 2007.

DIAS, M. I.; PRUDÊNCIO, M. I. Neutron activation of archaeological materials: an overview of the ITN NAA Laboratory, Portugal. Archaeometry, v. 49, p. 383–393, 2007.

TITE, M. S. Ceramic production, provenance and use — a review. Archaeometry, v. 50, p. 216–231, 2008.

MUNITA, C. S.; PAIVA, R. P.; ALVES, M. A.; OLIVEIRA, P. M. S.; MOMOSE, E. F. Provenance study of archaeological ceramic. J. Trace Microprobe Tech, v. 21, p. 695–697, 2003.

MCKEEVER, S. W. S. Thermoluminescence of Solids, Cambridge: Cambridge University Press, 1985.

BARTOLL, J.; IKEYA, M. Dating of pottery: a trial, Appl. Radiat. Isot., v. 48, p. 981–984, 1997.

AITKEN, M. J. Thermoluminescence Dating, London: Academic Press, 1985.

ROOSEVELT, A. C. Arqueologia Amazônica, São Paulo: Companhia das Letras, 1992.

MONGELÓ, G. Z. Ocupação indígena no sítio do Brejo, Alto Rio Madeira, Rondônia: análise da cerâmica arqueológica. Available at: <http://www.arqueologia.unir.br/downloads/5 997_santos_ocupacao_indigena_no_sitio_do_brejo___analise_ceramica,_2015.pdf>. Last accessed: 01 Dec. 2017.

NEVES, E. G. Sob os Tempos Do Equinócio: Oito Mil Anos de História na Amazônia Central (6.500 AC – 1.500 DC), Tese de Livre Docência, Museu de Arqueologia e Etnologia da USP, São Paulo, Brasil (2013).

MUNITA, C. S.; PAVIA, R. P.; ALVES, M. A.; OLIVEIRA, P. M. S.; MOMOSE, E. F. Contribution of neutron activation analysis to archaeological studies. J. Trace and microprobe techniques, v. 18, p. 381-387, 2000.

MILLER, E. TH. Pesquisas arqueológicas no Pantanal do Guaporé: a sequência seriada da cerâmica da Fase Bacabal, Tocantins: Porto Nacional, 2009.

TATUMI, S. H.; RIBEIRO, R. B.; CANO, N. F.; MUNITA, C. S.; WATANABE, S.; ROCCA, R. R.; NEVES, E. G.; TAMANAHA, E. K. A preliminary study of archaeological ceramics from the São Paulo II archaeological site by INAA. Available at: <http://repositorio.ipen.br:8080/xmlui/bitstream/handle/123456789/17719/18507.pdf?sequence=1&isAllowed=y>. Last accessed: 01 Dec. 2017.

BISHOP, R. L.; CANOUTS, V.; GROWN, P. L.; ATTAS, M.; ATLEY, S. P. Sensitivity precision, and accurancy: Their roles in ceramic compositional data bases. American Antiquity, v. 55, p 537, 1990.

ATTAS, M.; FOSSEY, J. M.; YAFFE, L. Corrections for drill-bit contamination in sampling ancient pottery for neutron activation analysis. Archaeometry, v. 26, p. 104-107, 1984.

BEIER, T.; MOMMSEN, H. Modified Mahalanobis filters for grouping pottery by chemical composition. Archaeometry, v. 36, p. 287–306, 1994.

SAYRE, E. V. Brookhaven procedures for statistical analysis of multivariate archaeometric data, New York: Brookhaven National Laboratory Report BNL-21693, 1975.

KOCH, G. S.; LINK, R. F. Statistical analysis of geological data, New York: Courier Dove Publications, 2002.

OLIVEIRA, P. M. S., MUNITA, C. S. Influência do valor critico na detecção de valores discrepantes em arqueometria, In: SIMPÓSIO DE ESTATÍSTICA APLICADA À EXPERIMENTAÇÃO AGRONÔMICA, 2003, Lavras. Annals... Lavras: 10° SEAGRO, 2003.

MEGGERS, B. El contexto Ecológico del formative in Ledengerber, P. Formativo Sudamericano: uma Revaluacíon. Quito, v. 56, p. 801-823, 1992.

MEGGERS, B., EVANS, C., ESTRADA, E. Early Formative Period of Coastal Ecuador: The Valdivia and Machalilla Phases, Washington: Smithsonian Institute, 1965.

Downloads

Published

2019-02-19

Issue

Section

The Meeting on Nuclear Applications (ENAN)

How to Cite

Chemical characterization of ancient pottery from the south-west Amazonia using Instrumental Neutron Activation Analysis. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 7, n. 2A (Suppl.), 2019. DOI: 10.15392/bjrs.v7i2A.619. Disponível em: https://www.bjrs.org.br/revista/index.php/REVISTA/article/view/619.. Acesso em: 29 apr. 2024.

Similar Articles

1-10 of 476

You may also start an advanced similarity search for this article.