Application of X-ray Microtomography in Dental Science
DOI:
https://doi.org/10.15392/2319-0612.2024.2689Keywords:
X-ray, Microtomography, three-dimensional imaging, dental scienceAbstract
This study delves into the application of X-ray microtomography (microCT) in dental sciences, displaying its ability to provide detailed and non-destructive three-dimensional images of dental structures. Two primary studies were conducted: the first study examined the formation of dentinal cracks after root canal instrumentation in lower molars using different mechanized systems and evaluated the presence of debris after instrumentation. The second study assessed the removability of bioceramic cement combined with gutta-percha in lower premolars and quantified the remaining material after re-instrumentation of the canals. The results demonstrated that microCT is an essential tool for identifying cracks with micrometric precision and quickly quantifying debris and remaining obturation materials, underscoring its effectiveness in dental diagnosis and research. The research highlights the potential of microCT to enhance clinical outcomes in dentistry, significantly contributing to the development of new treatment techniques and materials. It suggests that this technology will become increasingly accessible and widely adopted.
Downloads
References
[1] VERSIANI, M. A.; BAZZARELLA, N. G.; MARQUES, M. S. Microtomografia aplicada à pesquisa odontológica. In: ESTRELA, C. Metodologia Cientifica. São Paulo: Artes Médicas, 2018, p. 637-666. ISBN 978-85-367-0273-5.
[2] PLOTINO, G.; GRANDE, N. M.; ISRAELI, I. et al. Three-dimensional imaging using microcomputed tomography for studying tooth macromorphology. American Dental Association, Chicago, v. 137, n. 11, p. 1555-1561, 2006. DOI: https://doi.org/10.14219/jada.archive.2006.0091
[3] BARRETO, C. da C. G.; RIVERA, F.; SOARES, P. et al. New ultrasonic tip for root canal filling of the mesial canals of mandibular molars with isthmus: a laboratory evaluation using computed microtomography. Journal of Endodontics, New York, v. 49, n. 4, p. 544-548, 2023. DOI: https://doi.org/10.1016/j.joen.2023.02.010
[4] BUZUG, T. M. Computed tomography from photon statistics to modern cone-beam CT. Springer-Verlag Berlin Heidelberg, Berlin, v. 1, n. 1, p. 1-20, 2008.
[5] MACHADO, A. S.; SANTOS, L. J.; PEREIRA, F. et al. Analysis of metallic archaeological artifacts by x-ray computed microtomography technique. Applied Radiation and Isotopes, Amsterdam, v. 151, n. 1, p. 274-279, 2019. DOI: https://doi.org/10.1016/j.apradiso.2019.06.016
[6] FRASNELLI, G. D.; CARDOSO, J. A.; LOPES, C. et al. Effect of different ceramic systems on antagonist dental structure by microtomographic analysis. Dental Materials, London, v. 40, n. 3, p. 118-123, 2024. DOI: https://doi.org/10.1016/j.dental.2023.10.021
[7] DESOUTTER, A.; KLEIN, K.; SAURET, A. et al. Human tooth enamel tuft drapes revealed by microtomography. Archives of Oral Biology, London, v. 141, n. 1, p. 105487, 2022. DOI: https://doi.org/10.1016/j.archoralbio.2022.105487
[8] ZASLANSKY, P.; WEINBERG, S.; ROSENBERG, Y. et al. 3D variations in human crown dentin tubule orientation: a phase-contrast microtomography study. Dental Materials, Amsterdam, v. 26, n. 1, p. e1-e10, 2010. DOI: https://doi.org/10.1016/j.dental.2009.09.007
[9] VILLAMAYOR, K. G. G.; ANDERSON, R. J.; SCOTT, E. et al. Comparative analysis of filling quality and bond strength among different root-end filling materials in root-end cavities. International Journal of Adhesion and Adhesives, London, v. 133, n. 1, p. 103757, 2024. DOI: https://doi.org/10.1016/j.ijadhadh.2024.103757
[10] DAVIS, G. R.; BURGESS, T.; JONES, C. et al. Quantitative high contrast X-ray microtomography for dental research. Journal of Dentistry, London, v. 41, n. 5, p. 475-482, 2013. DOI: https://doi.org/10.1016/j.jdent.2013.01.010
[11] DAVIS, G. R.; KAKADE, A. et al. Real-time observations of tooth demineralization in 3 dimensions using X-ray microtomography. Journal of Dentistry, London, v. 69, n. 3, p. 88-92, 2018. DOI: https://doi.org/10.1016/j.jdent.2017.11.010
[12] NORZAITI, M. K.; RAMLI, A.; HUSSAIN, M. I. et al. X-Ray microtomography (XMT) to observe penetration depth of high contrast bonding agent into sound dentine. Materials Today: Proceedings, London, v. 16, n. 1, p. 2380-2388, 2019. DOI: https://doi.org/10.1016/j.matpr.2019.06.142
[13] AL-KHAFAJI, T. J.; AL-TAIE, Z.; AL-MUKTAR, H. et al. An assessment of mineral concentration of dental enamel neighbouring hypothetical orthodontic brackets using X-ray microtomography. Journal of Dentistry, London, v. 126, n. 1, p. 104306, 2022. DOI: https://doi.org/10.1016/j.jdent.2022.104306
[14] BURKLEIN, S.; SCHÄFER, E. et al. Incidence of dentinal defects after root canal preparation: reciprocating versus rotary instrumentation. Journal of Endodontics, New York, v. 39, n. 4, p. 501-504, 2013. DOI: https://doi.org/10.1016/j.joen.2012.11.045
[15] ZAIN, S.; HASSAN, H.; TAN, E. et al. Mineral exchange within restorative materials following incomplete carious lesion removal using 3D non-destructive XMT subtraction methodology. Journal of Dentistry, London, v. 99, n. 1, p. 103389, 2020. DOI: https://doi.org/10.1016/j.jdent.2020.103389
[16] NELDAM, C. A.; SKOVGAARD, L.; DAHL, A. et al. Application of high resolution synchrotron micro-CT radiation in dental implant osseointegration. Journal of Cranio-Maxillofacial Surgery, Munich, v. 43, n. 8, p. 682-687, 2015. DOI: https://doi.org/10.1016/j.jcms.2015.03.012
[17] BITTAR, B. F.; SILVA, D.; SANTOS, L. et al. Assessing peri-implant bone microarchitecture: conventional vs. osseodensification drilling - ex vivo analysis. Brazilian Dental Journal, São Paulo, v. 35, n. 1, p. e24-5599, 2024. DOI: https://doi.org/10.1590/0103-6440202405599
[18] BESNARD, C.; DUMAS, J.; SAUTRON, A. et al. 3D analysis of enamel demineralisation in human dental caries using high-resolution, large field of view synchrotron X-ray micro-computed tomography. Materials Today: Communications, Amsterdam, v. 27, n. 1, p. 102418, 2021. DOI: https://doi.org/10.1016/j.mtcomm.2021.102418
[19] VON ARX, T.; HUNG, R.; GEIGER, E. et al. Detection of dentinal cracks after root-end resection: microscopy and endoscopy with scanning electron microscopy. Journal of Endodontics, New York, v. 36, n. 12, p. 1563-1568, 2010 DOI: https://doi.org/10.1016/j.joen.2010.06.016
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2024 Gabriel José Costa Teles, Alessandra Machado, Ricardo Lopes

This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/