Effects of Ionizing Radiation on the Color and Morphology Properties of Leather

Authors

DOI:

https://doi.org/10.15392/2319-0612.2024.2675

Keywords:

gamma radiation, leather conservation, cultural heritage

Abstract

Effective conservation strategies for leather artifacts and art objects are essential for preserving cultural heritage, particularly given the inherent vulnerability of the material to biodegradation, as leather, an organic material, is especially susceptible to this process. Gamma radiation has emerged as a promising method for the disinfestation and disinfection of cultural heritage objects and archival materials. This study aimed to advance the understanding of gamma radiation as a conservation technique for vegetable-tanned snake and chrome-tanned bovine leather, specifically focusing on its effects on chromaticity, surface topology, fiber structure and thermal behavior. Gamma radiation was applied at controlled doses of 1 and 3 kGy, and its impact on the morphology of the leather was assessed using colorimetry within the CIELAB color space and field emission gun scanning electron microscopy (FEGSEM). The findings indicated that gamma radiation at these doses induced minimal alterations in the morphological properties of the leather. The color differences for irradiated and non-irradiated samples were negligible, with total color differences (ΔE) remaining within acceptable limits (ΔE < 3). Moreover, FEGSEM analysis demonstrated that the fiber structure and surface morphology were not significantly compromised by the irradiation process. Thermogravimetric analyses showed similar thermal decomposition between non-irradiated and irradiated samples for both bovine and snake leather, with detailed data analysis indicating thermal stability. The results supported the efficiency of gamma radiation as a conservation technique for both bovine and snake leather artifacts, preserving their aesthetic and structural integrity.

 

 

Downloads

Download data is not yet available.

References

[1] COVINGTON, A. D.; WISE, W. R. Introduction. In: COVINGTON, A. D.; WISE, W. R. Tanning Chemistry: The Science of Leather. London, UK: Royal Society of Chemistry, 2019. p. 027–031. https://doi.org/10.1039/9781839168826. PDF ISBN: 978-1-83916-882-6 DOI: https://doi.org/10.1039/9781839168826

[2] NAVARRO, D.; WU, J.; LIN, W.; FULLANA-I-PALMER, P.; PUIG, R. Life cycle assessment and leather production. Journal of Leather Science and Engineering. n. 2, p. 1–13, 2020. https://jlse.springeropen.com/articles/10.1186/s42825-020-00035-y DOI: https://doi.org/10.1186/s42825-020-00035-y

[3] ELNAGGAR, A.; OSAMA, A.; ANWAR, A.M.; EZZELDIN, S.; ELHASSAN, S. A. E.; EBEID, H.; LEONA, M.; MAGDELDIN, S. Paleoproteomic profiling for identification of animal skin species in ancient Egyptian archaeological leather using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Heritage Science. n. 10, p. 1–10, 2022. https://heritagesciencejournal.springeropen.com/articles/10.1186/s40494-022-00816-0 DOI: https://doi.org/10.1186/s40494-022-00816-0

[4] FERRARI, W. A.; PACHECO, J. W. F.; RAVACCI, H. C. J. [et al.]; MARTINES, A. M. [et al.]. Descrição do processo industrial. In: FERRARI, W. A.; PACHECO, J. W. F.; RAVACCI, H. C. J. [et al.]; MARTINES, A. M. [et al.]. Guia técnico ambiental de curtumes. 2. ed. São Paulo: Companhia Ambiental do Estado de São Paulo (CETESB)., 2015. p. 027–032. ISBN 978-85-61405-40-3

[5] SHI, J.; SHENG, L.; SALMI, O.; MAIS, M.; PUIG, R. Life cycle assessment insights into nanosilicates-based chrome-free tanning processing towards eco-friendly leather manufacture. Journal of Cleaner Production, v. 434, p 1–9, 2024. https://www.sciencedirect.com/science/article/pii/S0959652623040507 DOI: https://doi.org/10.1016/j.jclepro.2023.139892

[6] WANG, Y.; ZHANG, Y.; WANG, Z. Biodegradability of leather: a crucial indicator to evaluate sustainability of leather. Collagen and Leather. ed 6, 1–9, 2024. https://jlse.springeropen.com/articles/10.1186/s42825-024-00151-z DOI: https://doi.org/10.1186/s42825-024-00151-z

[7] DICKINSON, E.; HIGH, K.E. The use of infrared spectroscopy and chemometrics to investigate deterioration in vegetable tanned leather: potential applications in heritage science. Heritage Science. n. 10, p 1–13, 2022. https://heritagesciencejournal.springeropen.com/articles/10.1186/s40494-022-00690-w DOI: https://doi.org/10.1186/s40494-022-00690-w

[8] DAVIS, M. A.; CULLETON, B. J.; ROSENCRANCE, R. L.; JAZWA, C. S. Experimental observations on processing leather, skin, and parchment for radiocarbon dating. Radiocarbon. Published online, p. 1–23, 2023. https://www.cambridge.org/core/journals/radiocarbon/article/experimental-observations-on-processing-leather-skin-and-parchment-for-radiocarbon-dating/29BFB589CE24129A802A8E22132C6B2B#

[9] ZHANG, M., FAN, J., LIU, J.; CHEN, Y.; LU, Y.; LEI, Y.; KAYA, M. G. A.; TANG, K. A comprehensive evaluation of a historical leather armor from Yanghai Cemetery, Turpan. Heritage Science, n. 12, p. 1–11, 2024. https://heritagesciencejournal.springeropen.com/articles/10.1186/s40494-024-01275-5 DOI: https://doi.org/10.1186/s40494-024-01275-5

[10] ZHANG, M.; ZHANG, Z.; WANG, F.; LIU, J.; LEI, Y.; KAYA, M. G. A.; TANG, K. A.; TANG, K. A novel identification method for collagen-based cultural heritage: Integrating thermokinetics and generalized master plots. Journal of Cultural Heritage, n. 67, p. 226–236, 2024. https://www.sciencedirect.com/science/article/pii/S1296207424000657?via%3Dihub DOI: https://doi.org/10.1016/j.culher.2024.03.006

[11] ZHANG, Y.; CHEN, Z.; LIU, X.; SHI, J.; CHEN, H.; GONG, Y. SEM, FTIR and DSC Investigation of Collagen Hydrolysate Treated Degraded Leather. Journal of Cultural Heritage, v. 48, p. 205–210, 2021. https://www.sciencedirect.com/science/article/pii/S1296203620301954 DOI: https://doi.org/10.1016/j.culher.2020.11.007

[12] UNITED NATIONS EDUCATION, SCIENTIFIC AND CULTURAL ORGANIZATION (UNESCO). World Heritage. Available at: https://www.unesco.org/en/world-heritage. Accessed on: 15 apr. 2024.

[13] DRUMOND, M.C.P. Preservação e Conservação em Museus. In: INSTITUTO do PATRIMÔNIO HISTÓRICO e ARTÍSTICO NACIONAL (IPHAN). Caderno de Diretrizes Museológicas 1 ed. 2. Belo Horizonte: Secretaria de Estado da Cultura/Superintendência de Museus, 2006, p. 105–135. http://portal.iphan.gov.br//uploads/publicacao/caderno_diretrizes_museologicas_2a_edicao.pdf

[14] COELHO, B.; QUITES, M. R. E. Estudo da escultura devocional em madeira. Belo Horizonte: Fundação João Pinheiro, 2014. ISBN: 978-8580542189.

[15] THOMSON, R. The Nature and properties of leather. In: Kite, M., Thomson, R. Conservation of Leather and Related Materials. New York, USA: Butterworth-Heinemann, 2011. p. 01–03. ISBN: 978-0-7506-4881-3.

[16] ZHANG, M.; YADI, H.; LIU, J.; PEI, Y.; TANG, K.; LEI, Y. Biodeterioration of collagen-based cultural relics: A review. Fungal Biology Reviews. v. 39, p. 046–059, 2022. https://www.sciencedirect.com/science/article/pii/S1749461321000622 DOI: https://doi.org/10.1016/j.fbr.2021.12.005

[17] CORTELLA, L.; ALBINO, C.; TRAN, Q.; FROMENT, K. 50 years of French experience in using gamma rays as a tool for cultural heritage remedial conservation. Radiation Physics and Chemistry. v. 171, p. 1–13, 2020. DOI: https://doi.org/10.1016/j.radphyschem.2020.108726

[18] VUJCIC, I.; MASIC, S.; MEDIC, M.; MILIĆEVIĆ, B.; DRAMICANIN, M. The influence of gamma irradiation on the color change of wool, linen, silk, and cotton fabrics used in cultural heritage artifacts. Radiation Physics and Chemistry. v. 156, p. 307–313, 2019. https://www.sciencedirect.com/science/article/pii/S0969806X18307163?via%3Dihub DOI: https://doi.org/10.1016/j.radphyschem.2018.12.001

[19] RIZZO, M. M.; MACHADO, L.D.B.; BORRELY, S.I.; SAMPA, M.H.O.; RELA, P.R.; FARAH, J.P.S.; SCHUMACHER, R.I. Effects of gamma rays on a restored painting from the XVIIth century. Radiation Physics and Chemistry. v. 63, p. 259–262, 2002. https://www.sciencedirect.com/science/article/pii/S0969806X01005096 DOI: https://doi.org/10.1016/S0969-806X(01)00509-6

[20] VASQUEZ, P. A. S. The State of the Art in Radiation Processing for Cultural Heritage in Brazil In: Uses of Ionizing Radiation for Tangible Cultural Heritage Conservation. Vienna, AT: International Atomic Energy Agency. ed. 1, 2017. p. 197–201. ISBN 978–92–0–103316–1.

[21] PONTA, C. C.; HAVERMANS, J. B. G. A. Trends in disinfection. In: Uses of Ionizing Radiation for Tangible Cultural Heritage Conservation. Vienna, AT: International Atomic Energy Agency. ed. 1, 2017. p. 31–37. ISBN 978–92–0–103316–1.

[22] CORTELLA, L. Khroma the frozen baby mammoth. In: Uses of Ionizing Radiation for Tangible Cultural Heritage Conservation. Vienna, AT: International Atomic Energy Agency. ed. 1, 2017. p. 137 – 139. ISBN 978–92–0–103316–1.

[23] MARUŠIĆ, K.; MLINARIĆ, N. M.; MIHALJEVIĆ, B. Radiation treatment of cultural heritage objects made of leather treated with common preservatives. Radiation Physics and Chemistry. v. 197, p. 1–6, 2022. https://www.sciencedirect.com/science/article/pii/S0969806X22001682 DOI: https://doi.org/10.1016/j.radphyschem.2022.110126

[24] PONTA, C. C.; HAVERMANS, J. B. G. A.; BOUTAINE, J. L. Disinfection of cultural artefacts using irradiation. In: Uses of Ionizing Radiation for Tangible Cultural Heritage Conservation. Vienna, AT: International Atomic Energy Agency. ed. 1, p. 93–103, 2017. ISBN 978–92–0–103316–1.

[25] SINGARAJ, S. P.; MURALI, R. C.; KUMARESAN, A.; GUNASEKARAN, B. Characteristic Analysis of Sisal Fabric and Cow Nubuck Leather for Developing Leather Lifestyle Accessories. Journal of Natural Fibers. v. 20, p. 1–16, 2023. https://www.tandfonline.com/doi/epdf/10.1080/15440478.2023.2218120?needAccess=true DOI: https://doi.org/10.1080/15440478.2023.2218120

[26] ROVATSOS M.; ALTMANOVÁ M.; POKORNÁ M. J.; AUGSTENOVÁ B.; KRATOCHVÍL L. Cytogenetics of the Javan file snake (Acrochordus javanicus) and the evolution of snake sex chromosomes. Journal of Zoological Systematics and Evolutionary Research. v. 56, p. 117–225, 2017. https://onlinelibrary.wiley.com/doi/epdf/10.1111/jzs.12180 DOI: https://doi.org/10.1111/jzs.12180

[27] INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA). Radiation safety of gamma, electron and X Ray Irradiation Facilities IAEA Safety Standards Series. No. SS-G-8, 2010. https://www.iaea.org/publications/8401/radiation-safety-of-gamma-electron-and-x-ray-irradiation-facilities.

[28] INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN). Irradiador Multipropósito. Available at: https://www.ipen.br/portal_por/portal/interna.php?secao_id=2500&campo=1798. Accessed on: 15 apr. 2024.

[29] LORUSSO, S.; NATALI, A.; MATTEUCCI, C. Colorimetry applied to the field of cultural heritage: examples of study cases. Conservation Science in Cultural Heritage. v. 7, p. 187–220, 2007. https://conservation-science.unibo.it/article/view/1252

[30] SHRESTHA, Y. K.; SHRESTHA, S. K. Fundamentals of Colorimetry. 2024. https://www.intechopen.com/chapters/87730.

[31] SHARMA, G.; WU, W.; DALAL, E. The Development of the CIE 2000 Colour-Difference Formula: CIEDE2000. Color Research and Applications, vol. 30, p. 340–350, 2001. https://onlinelibrary.wiley.com/doi/abs/10.1002/col.1049 DOI: https://doi.org/10.1002/col.1049

[32] THOMASSET, A.; BENAYOUN, S. Assessing the durability of diverse leather tanning techniques for the manufacturing of leather goods through artificial aging processes. Cleaner Engineering and Technology. Elsevier, v. 22, p. 1–16, 2024. https://www.sciencedirect.com/science/article/pii/S2666790824000879 DOI: https://doi.org/10.1016/j.clet.2024.100807

[33] HARDEBERG, J.Y. Acquisition et reproduction d’images couleur: approches colorimétrique et multispec-trale. Interface homme-machine [cs. HC]. 1999. 253p. Thèse (Docteur Specialité: Signal et Images) Ecole Nationale Supérieure des Télécommunications - Télécom ParisTech, Français.

[34] PONTA, C. C.; HAVERMANS J. B. G. A.; TRAN, Q. K.; CORTELLA, L. Effects of ionizing radiation on materials. In: INTERNATIONAL ATOMIC ENERGY AGENCY. Uses of ionizing radiation for tangible cultural heritage conservation. IAEA Radiation Technology Series Nº 6. Vienna, p. 61–85, 2017.

[35] VADRUCCI, M.; DE BELLIS, G.; MAZZUCA, C.; MERCURI, F.; BORGOGNONI, F.; SCHIFANO, E.; UCCELLETTI, D.; CICERO, C. Effects of the Ionizing Radiation Disinfection Treatment on Historical Leather. Frontiers in Materials, v. 7, p. 1–9, 2020. https://www.frontiersin.org/journals/materials/articles/10.3389/fmats.2020.00021/full DOI: https://doi.org/10.3389/fmats.2020.00021

[36] GAIDAU, C.; STANCULESCU, I. R.; STANCA, M.; CUTRUBINIS, M.; TRANDAFIR, L.; ALEXANDRU, M.; ALEXE, C. A. Gamma irradiation a green alternative for hides and leather conservation. Radiation Physics and Chemistry, v. 182, p. 1–9, 2021. https://www.sciencedirect.com/science/article/pii/S0969806X21000190#:~:text=Gamma%20irradiation%20allows%20preserving%20not,potential%20for%20leather%20final%20products.

[37] KOVACHEVA, A. P.; BOSHNAKOVA, M. N.; ZHEKOV, M. E. D. Studying side-effects of gamma-irradiation processing of leather materials. International Scientific Journal, n. 5, p. 228–231, 2017. https://stumejournals.com/journals/i4/2017/5/228

[38] BANON, E.; GARCÍA, A. N.; MARCILLA, A. Thermogravimetric analysis and Py-GC/MS for discrimination of leather from different animal species and tanning processes. Journal of Analytical and Applied Pyrolysis, v. 159, p. 1–13, 2021. https://www.sciencedirect.com/science/article/pii/S0165237021002308 DOI: https://doi.org/10.1016/j.jaap.2021.105244

[39] CZIROK, I. S.; JAKAB, E.; CZÉGÉNY, Z.; BADEA, E.; BABINSZKI, B.; TÖMÖSKÖZI, S.; MAY, Z.; SEBESTYÉN, Z. Thermal characterization of leathers tanned by metal salts and vegetable tannins. Journal of Analytical and Applied Pyrolysis, v. 173, p. 1–13, 2023. https://www.sciencedirect.com/science/article/pii/S0165237023001791 DOI: https://doi.org/10.1016/j.jaap.2023.106035

[40] MOTHÉ, C. G.; MOTHÉ, M. G.; RIGA, A. T.; ALEXANDER, K. S. Thermal analysis of a model bio-membrane: Human and snake skins. Journal of Thermal Analysis and Calorimetry, v. 106, n. 3, p. 637–642, 2011. https://akjournals.com/view/journals/10973/106/3/article-p637.xml DOI: https://doi.org/10.1007/s10973-011-1812-2

[41] CARSOTE, C.; SENDREA, C.; MICU, M. C.; ADAMS, A.; BADEA, E. Micro-DSC, FTIR-ATR and NMR MOUSE study of the dose-dependent effects of gamma irradiation on vegetable-tanned leather: The influence of leather thermal stability. Radiation Physics and Chemistry, v. 189, p. 1–12, 2021. https://www.sciencedirect.com/science/article/pii/S0969806X21003625 DOI: https://doi.org/10.1016/j.radphyschem.2021.109712

[42] CHEBWOGEN, M.; NALYANYA, K. M., AMOLLO, T. A., MATHENGE, S. G. Effect of Gamma Irradiation on the Stability of Tanned Leather. Textile & Leather Review, v. 7, p. 550–568, 2024. https://www.tlr-journal.com/tlr-2024-038-chebwogen/ DOI: https://doi.org/10.31881/TLR.2024.038

Downloads

Published

2025-01-22

How to Cite

Effects of Ionizing Radiation on the Color and Morphology Properties of Leather. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 4A (Suppl.), p. e2675, 2025. DOI: 10.15392/2319-0612.2024.2675. Disponível em: https://www.bjrs.org.br/revista/index.php/REVISTA/article/view/2675. Acesso em: 1 may. 2025.