Methodology for evaluating controlled area subdivision during conceptual design phase of nuclear facilities

Authors

  • Helio Massaharu Murata Fundação para o Desenvolvimento Tecnológico da Engenharia (FDTE) https://orcid.org/0000-0001-6234-3752
  • Douglas Brandão Baroni Diretoria de Desenvolvimento Nuclear da Marinha (DDNM)
  • Anelise Ruzzarin Fundação para o Desenvolvimento Tecnológico da Engenharia (FDTE)
  • Fagner Chagas Rother Diretoria de Desenvolvimento Nuclear da Marinha (DDNM)
  • Sad Sandrini Borsoi Diretoria de Desenvolvimento Nuclear da Marinha (DDNM)

DOI:

https://doi.org/10.15392/2319-0612.2024.2648

Keywords:

Radiological Protection, Occupational Exposure, Nuclear Facilities, Dose Rate Limits

Abstract

This work discusses the classification of subdivision of radiologically controlled areas in nuclear facilities, including those in research facilities with particle accelerators, such as CERN and KEK. The classification of radiological areas is a regulatory requirement proposed to assist in managing occupational exposures. The International Atomic Energy Agency (IAEA) recommends that the subdivision of controlled areas be based on similar facilities and dose rates. However, in a facility still in the conceptual design phase, without similar references and with an uncertain source term inventory, a more assertive classification for radioprotection purposes can be challenging. The document explores classification systems in various countries, including Brazil, Japan, South Korea, the United Kingdom, and the United States, highlighting differences in dose rate limits and regulatory frameworks. The presented methodology is suitable for classifying radiological areas in facilities without references during the conceptual phase, such as naval bases supporting nuclear ships. The approach aims to balance safety and operational requirements, in line with the ALARA principle specified in Recommendation 60 of the International Commission on Radiological Protection.

Downloads

Download data is not yet available.

References

[1] INTERNATIONAL ATOMIC ENERGY AGENCY. Occupational radiation protection. Vienna: International Atomic Energy Agency, 2018. (IAEA Safety Standards Series, ISSN 1020–525X, no. GSG-7). ISBN 978–92–0–102917–1.

[2] INTERNATIONAL ATOMIC ENERGY AGENCY. Radiation protection and safety of radiation sources: international basic safety standards. Vienna: International Atomic Energy Agency, 2014. (IAEA Safety Standards Series, ISSN 1020–525X, no. GSR Part 3). ISBN 978–92–0–135310–8.

[3] INTERNATIONAL ATOMIC ENERGY AGENCY. Radiation protection aspects of design for nuclear power plants. Vienna: International Atomic Energy Agency, 2005. (IAEA Safety Standards Series, ISSN 1020–525X, no. NS-G-1.13). ISBN 92–0–107905–2.

[4] INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION. The 2007 Recommendations of the International Commission on Radiological Protection. Annals of the ICRP (ICRP publication 103). Elsevier Ltd., 2007. ISBN 978-0-7020-3048-2.

[5] COMISSÃO NACIONAL DE ENERGIA NUCLEAR. CNEN NN 3.01: Requisitos básicos de radioproteção e segurança radiológica de fontes de radiação. Rio de Janeiro: CNEN, 2024.

[6] ELETRONUCLEAR - Eletrobrás Termonuclear S.A. Final Safety Report - Central Nuclear Almirante Álvaro Alberto - Unit 2. Rev. 8. MA/2-0809.2/120000. Rio de Janeiro: ELETRONUCLEAR, 2004.

[7] WAKABAYASHI, G.; YAMADA, T.; ENDO, T.; PYEON C. H. Introduction to Nuclear Reactor Experiments. Singapore: Springer, 2023. ISBN 978-981-19-6588-3. DOI 10.1007/978-981-19-6589-0. DOI: https://doi.org/10.1007/978-981-19-6589-0

[8] JAPAN. Ministry of Labour. Order No. 41 of September 30, 1972. Regulation on Prevention of Ionizing Radiation Hazards. Tokyo: Ministry of Labour. Available at: https://www.japaneselawtranslation.go.jp/en/laws/view/2865/en. Access in: July, 2024.

[9] HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION (KEK). Study Guide for Radiation Safety. 2nd edition. Ibaraki, Japan: Radiation Science Center, 2022.

[10] REPUBLIC OF KOREA. Nuclear Safety and Security Commission. Act No. 10917 of Jul. 25, 2011. Korea Institute of Nuclear Safety Act. Daejeon: NSSC, 2011. Available at: https://www.nssc.go.kr/attach/namo/files/000001/20191206163855453_AJ1BR70Z.pdf. Access in: July 2024.

[11] INTERNATIONAL ATOMIC ENERGY AGENCY. Country Nuclear Power Profiles. Non-serial Publications. Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY, 2014. Available at: https://www-pub.iaea.org/MTCD/Publications/PDF/ cnpp2022/countryprofiles/KoreaRepublicof/KoreaRepublicof.htm. Access in: July, 2024.

[12] SONG, C.; KONG, T. Y.; KIM, S.; SON, J.; KIM, H.; KIM, J.; KIM, H. G. Classification of Radiation Work in Korean Nuclear Power Plants. Journal of Radiation Industry. v. 17, n. 3, p. 239-256, 2023. DOI: https://doi.org/10.23042/ radin.2023.17.3.239.

[13] REPUBLIC OF KOREA. Nuclear Safety and Security Commission. Act No. 13078 of Jan. 20, 2015. Nuclear Safety Act. Seoul: NSSC, 2015. Available at: https://www.nssc.go.kr/attach/namo/files/000001/

20191206162603834_RZ5ZOK9L.pdf. Access in: July, 2024.

[14] REPUBLIC OF KOREA. Nuclear Safety and Security Commission. Regulation of the Nuclear Safety and Security Commission No.4 of Nov. 11, 2011. Regulations on Technical Standards for Radiation Safety Control, Etc. Daejeon: NSSC, 2011. Available at: https://www.nssc.go.kr/attach/namo/files/000001/20200131180700377_KZTENAAJ.pdf. Access in: July, 2024.

[15] REPUBLIC OF KOREA. Nuclear Safety and Security Commission. Enforcement Decree of the Nuclear Safety Act. Presidential Decree No. 33658 of Aug. 01, 2023. (in Korean) Nuclear Safety Act. Seoul: NSSC, 2023.

[16] KIM, Y. Review on radiation area zoning of NPPs in Korea. In: 2018 ISOE International Symposium, 2018, Tokyo, Japan. Tokyo: Korea Institute of Nuclear Safety (KINS), 2018.

[17] KIM, S.; KONG, T. Y.; CHOI, W. S.; SON, J.; KIM, H.; SONG, C.; KIM, J.; YANG, K. T.; SONG, J. S.; KIM, H. G. A methodology to designate radiation‐controlled areas in decommissioning nuclear power plants. Energy Science & Engineering. v. 11, p. 3204-3214, 2023. DOI: https://doi.org/10.1002/ese3.1514. DOI: https://doi.org/10.1002/ese3.1514

[18] UNITED KINGDOM. United Kingdom Legislation. UK Statutory Instruments 2017 No. 1075 of Nov. 27, 2017. Health and Safety – The ionising radiations regulations 2017. London: United Kingdom Parliament, 2017. Available at: https://www.legislation.gov.uk/uksi/2017/1075/pdfs/uksi_20171075_en.pdf. Access in: July, 2024.

[19] HEALTH AND SAFETY EXECUTIVE. Working with ionising radiation, Approved Code of Practice and guidance. L121, 2nd Edition, Norwich: TSO, 2018. ISBN 978–0–7176-6662–1.

[20] EUROPEAN AGENCY FOR SAFETY AND HEALTH AT WORK. Directive 2013/59/Euratom. Protection against ionising radiation. Luxembourg: Official Journal of the European Union, 2019.

[21] GENERAL NUCLEAR SYSTEM LTD. UK HPR1000 GDA Project. Radiological Protection. Preliminary Safety Report, Chapter 22, Rev. 0. UK: General Nuclear System Ltd., 2017.

[22] UNITED STATES OF AMERICA. U.S. Federal Register. Code of Federal Regulations (CFR), Title 10, Chapter I, Part 20, Subpart A. Standards for protection against radiation. Washington D.C.: U.S. Federal Register, 1991. Available at: https://www.ecfr.gov/current/title-10/chapter-I/part-20. Access in: July 2024.

[23] UNITED STATES OF AMERICA. U.S. Federal Register. Code of Federal Regulations (CFR), Title 10, Chapter III, Part 835, Subpart A. Standards for protection against radiation. Washington D.C.: U.S. Federal Register, 1993. Available at: https://www.ecfr.gov/current/title-10/chapter-III/part-835/subpart-A. Access in: July 2024.

[24] U.S. DEPARTMENT OF ENERGY. DOE O 458.1, Chg 4. Radiation protection of the public and the environment. Washington D.C.: DOE, 2020.

[25] PRINCE, R. Radiation Protection at Light Water Reactors. Heidelberg: Springer, 2012. e-ISBN: 978-3-642-28388-8. DOI: 10.1007/978-3-642-28388-8. DOI: https://doi.org/10.1007/978-3-642-28388-8

[26] SILLS, J. M. U.S. Lessons Learned Initiative for Locked High Radiation Areas. In: 2006 ISOE International ALARA Symposium, 2006, Essen, Germany. Essen: San Onofre NPP, 2006.

[27] FORKEL-WIRTH, D.; CARBONEZ, P.; GOEHRING-CRINON, A.; PERRIN, D.; ROESLER, S.; VINCKE, L.; ULRICI, L. Radiation protection aspects. In: Proceedings of Chamonix 2014 Workshop on LHC Performance, 2. Geneva: CERN, 2014. p. 276-280.

[28] BRUGGER, M.; FORKEL-WIRTH, D.; MENZEL, H. G.; ROESLER, S. Radiation protection constraints during the first stages of the LHC, In: 3rd LHC Project Workshop: 15th Chamonix Workshop, Geneva: CERN, 2006. p. 66-73.

[29] CERN. Safety Code. rev. F, Geneva: CERN, 2006.

[30] CERN. Safety Signs. Safety Guideline SG-SH-0-0-2, EDMS 2492550, Ver. 1.2, Geneva: CERN, 2021.

[31] U.S. DEPARTMENT OF ENERGY. DOE-STD-3009-2014. Preparation of Nonreactor Nuclear Facility Documented Safety Analysis. Washington D.C.: DOE, 2014.

[32] U.S. NUCLEAR REGULATORY RESEARCH. NUREG-1935. State-of-the-Art Reactor Consequence Analyses (SOARCA) Report. Washington D.C.: NRC, 2012.

[33] U.S. DEPARTMENT OF ENERGY. DOE-HDBK-1132-99. Design Considerations. Washington D.C.: DOE, 2014.

Downloads

Published

2025-04-02

How to Cite

Methodology for evaluating controlled area subdivision during conceptual design phase of nuclear facilities. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 4B (Suppl.), p. e2648, 2025. DOI: 10.15392/2319-0612.2024.2648. Disponível em: https://www.bjrs.org.br/revista/index.php/REVISTA/article/view/2648. Acesso em: 2 may. 2025.