Dosimetry for FLASH Radiotherapy: A review of dosimetric systems
DOI:
https://doi.org/10.15392/2319-0612.2024.2620Keywords:
bibliographic review, flash radiotherapy, dosimetric systemsAbstract
FLASH radiotherapy (FLASH-RT) is a promising approach to cancer treatment, characterized by the delivery of high doses of radiation in a short period of time, within fractions of seconds. In order to demonstrate the FLASH effect, single high doses of radiation delivered in very short times through a limited number of pulses are required. Previous studies have reported that FLASH-RT treatment can result in increased cell survival compared to conventional radiotherapy. This article aims to conduct a comprehensive literature search on dosimetry in FLASH radiotherapy, an emerging and promising technique in the field of radiotherapy. Some of the most used dosimeters in recent studies for FLASH radiotherapy will be discussed, including ionization chambers, diamond detectors, radiochromic films, EBT3 radiochromic films and thermoluminescent dosimeters. The main dosimetry parameters used in FLASH radiotherapy treatments will be analyzed, with emphasis on the characteristics and applicability of the different types of dosimeters used.
Downloads
References
[1] Bourhis, J. et al. Clinical translation of FLASH radiotherapy: Why and how? Radiotherapy and Oncology, v. 139, p. 11–17, 2019. DOI: https://doi.org/10.1016/j.radonc.2019.04.008
[2] Roger J. Berry, Eric J. Hall, David W. Forster, Thomas H. Storr, Michael J. Goodman, Survival of mammalian cells exposed to X rays at ultra-high dose-rates, British Journal of Radiology, v. 42, Issue 494, p. 102–107, https://doi.org/10.1259/0007-1285-42-494-102, 1969. DOI: https://doi.org/10.1259/0007-1285-42-494-102
[3] Rama N., et al. Improved tumor control through t-cell infiltration modulated by ultra-high dose rate proton FLASH using a clinical pencil beam scanning proton system Int. J. Radiat. Oncol. Biol. Phys. v. 105, p. S164–S5, 2019. DOI: https://doi.org/10.1016/j.ijrobp.2019.06.187
[4] Favaudon, V., et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci Transl Med, v. 6, 2014. DOI: https://doi.org/10.1126/scitranslmed.3008973
[5] Montay-Gruel P. et al. 2017 Irradiation in a flash: unique sparing of memory in mice after whole brain irradiation with dose rates above 100Gy/s Radiother. Oncol. v. 124 p. 365–369. DOI: https://doi.org/10.1016/j.radonc.2017.05.003
[6] Vozenin M.-C. et al. The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients. Clin Cancer Res. (in press) https://doi.org/10.1158/1078-0432.CCR-17-3375, 2018. DOI: https://doi.org/10.1158/1078-0432.CCR-17-3375
[7] Esplen, N.; Mendonca, M. S.; Bazalova-Carter, M. Physics and biology of ultrahigh dose-rate (FLASH) radiotherapy: a topical review. Physics in Medicine and Biology, v. 65, n. 23, p. 23TR03, 2020. DOI: https://doi.org/10.1088/1361-6560/abaa28
[8] Schüller, A. et al. The European Joint Research Project UHDpulse – Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates. v. 80, p. 134–150, 2020. DOI: https://doi.org/10.1016/j.ejmp.2020.09.020
[9] Montay-Gruel, P. et al. X-rays can trigger the FLASH effect: Ultra-high dose-rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice. v. 129, n. 3, p. 582–588, 2018. DOI: https://doi.org/10.1016/j.radonc.2018.08.016
[10] Lempart M. et al. Modifying a clinical linear accelerator for delivery of ultra-high dose rate irradiation. Radiother. Oncol. v. 139, p. 40–45, 2019. DOI: https://doi.org/10.1016/j.radonc.2019.01.031
[11] Bazalova-Carter M. and Esplen N. On the capabilities of conventional x-ray tubes to deliver ultra-high (FLASH) dose rates Med. Phys. v. 46, p.5690–5695, 2019. DOI: https://doi.org/10.1002/mp.13858
[12] Patriarca A. et al. Experimental set-up for FLASH proton irradiation of small animals using a clinical system Int. J. Radiat. Oncol. Biol. Phys. v. 102, p. 619–626, 2018. DOI: https://doi.org/10.1016/j.ijrobp.2018.06.403
[13] Esplen N.; Egoriti L.; Gottberg A. and Bazalova-Carter M. Strategies for the delivery of spatially fractionated radiotherapy using conventional and FLASH-capable sources: scientific session 1: YIS–07 Med. Phys. v. 46, 5373, 2019.
[14] Maxim P. G.; Keall P. and Cai J. FLASH radiotherapy: newsflash or flash in the pan? Med. Phys. v. 46, p. 4287–4290, 2019. DOI: https://doi.org/10.1002/mp.13685
[15] Khan, F. M. The Physics of Radiation Therapy (5ª ed.). Lippincott Williams & Wilkins, 2014.
[16] Almond P. R.; Biggs P. J.; Coursey B.; Hanson W.; Huq M. S.; Nath R. and Rogers D. AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams Med. Phys. v. 26, p. 1847–1870, 1999. DOI: https://doi.org/10.1118/1.598691
[17] Andreo P.; Burns D. T.; Hohlfeld K.; Huq M. S.; Kanai T.; Laitano F.; Smyth V. and Vynckier S. Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water Vienna (Austria): IAEA Technical Report Series, 2000.
[18] McEwen M.; Dewerd L.; Ibbott G.; Followill D.; Rogers D. W. O.; Seltzer S. and Seuntjens J. Addendum to the AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon beams Med. Phys. v. 41 p.1–20, 2014. DOI: https://doi.org/10.1118/1.4866223
[19] Burns D. T. and Mcewen M. R. Ion recombination corrections for the NACP parallel-plate chamber in a pulsed electron beam Phys. Med. Biol. v. 43 p. 2033–2045, 1998. DOI: https://doi.org/10.1088/0031-9155/43/8/003
[20] Bruggmoser G.; Saum R.; Schmachtenberg A.; Schmid F. and Schüle E. Determination of the recombination correction factor kS for some specific plane-parallel and cylindrical ionization chambers in pulsed photon and electron beams Phys. Med. Biol. v. 52 p. 35–50, 2007. DOI: https://doi.org/10.1088/0031-9155/52/2/N01
[21] Kry S.F.; Popple R.; Molineu A.; Followill D. S. Ion recombination correction factors (P(ion)) for Varian TrueBeam high-dose-rate therapy beams. J Appl Clin Med Phys. 13(6):3803. doi: 10.1120/jacmp.v13i6.3803. PMID: 23149774; PMCID: PMC5718527. 2012. DOI: https://doi.org/10.1120/jacmp.v13i6.3803
[22] Karsch, L. et al. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors. Medical Physics, v. 39, n. 5, p. 2447–2455, 13 abr. 2012. DOI: https://doi.org/10.1118/1.3700400
[23] Petersson K.; Jaccard M.; Germond J. F.; Buchillier T.; Bochud F.; Bourhis J.; Vozenin M. C. and Bailat C. High dose-per-pulse electron beam dosimetry—a model to correct for the ion recombination in the advanced markus ionization chamber Med. Phys. v. 44, p. 1157–1167, 2017. DOI: https://doi.org/10.1002/mp.12111
[24] Gomà C.; Marinelli M.; Safai S.; Verona-Rinati G. and Würfel J. The role of a microDiamond detector in the dosimetry of proton pencil beams Z. Med. Phys. v. 26, p. 88–94, 2016. DOI: https://doi.org/10.1016/j.zemedi.2015.08.003
[25] Marsolat F.; De Marzi L.; Patriarca A.; Nauraye C.; Moignier C.; Pomorski M.; Moignau F.;, Heinrich S.;, Tromson D. and Mazal A. Dosimetric characteristics of four PTW microDiamond detectors in high-energy proton beams Phys. Med. Biol. v. 61, p. 6413–6429, 2016. DOI: https://doi.org/10.1088/0031-9155/61/17/6413
[26] Rink A.; Lewis D. F.; Varma S.; Vitkin I. A. and Jaffray D. A. Temperature and hydration effects on absorbance spectra and radiation sensitivity of a radiochromic medium Med. Phys. v. 35 p. 4545–4555, 2008. DOI: https://doi.org/10.1118/1.2975483
[27] Koulouklidis A D, Cohen S and Kalef-Ezra J 2013 Thermochromic phase-transitions of GafChromic films studied by z-scan and temperature-dependent absorbance measurements Med. Phys. 40 112701. DOI: https://doi.org/10.1118/1.4823761
[28] Jaccard, M. et al. High dose‐per‐pulse electron beam dosimetry: Usability and dose‐rate independence of EBT3 Gafchromic films. v. 44(2), p. 725–735. https://doi.org/10.1002/mp.12066, 2017 DOI: https://doi.org/10.1002/mp.12066
[29] Kullander, R. C., & Stenström, H. Thermoluminescent Dosimetry Materials: Properties and Uses. Radiation Protection Dosimetry, v. 1(1-4), p. 209-220. doi: 10.1093/rpd/1.1-4.209, 1975.
[30] Jorge G. et al. Dosimetric and preparation procedures for irradiating biological models with pulsed electron beam at ultra-high dose-rate Radiother Oncol, v. 139, p. 34-39, 10.1016/j.radonc.2019.05.004, ISSN 0167-8140, 2019. DOI: https://doi.org/10.1016/j.radonc.2019.05.004
[31] Miles, D.; Sforza, D.; Wong, J. & Rezaee, M. Dosimetric characterization of a rotating anode x-ray tube for FLASH radiotherapy research. Medical Physics, v. 51(2), p. 1474–1483. https://doi.org/10.1002/mp.16609, 2024. DOI: https://doi.org/10.1002/mp.16609
[32] Bourgouin, A., Knyziak, A., Marinelli, M., Kranzer, R., Schüller, A., & Kapsch, R. P. (2022). Characterization of the PTB ultra-high pulse dose rate reference electron beam. Physics in Medicine and Biology, 67(8). https://doi.org/10.1088/1361-6560/ac5de8 DOI: https://doi.org/10.1088/1361-6560/ac5de8
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2024 Karoline Feitoza Suzart, Maria da Penha Albuquerque Potiens

This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/