Polymeric membranes grafted by ionizing radiation for uranium adsorption

Authors

  • Amanda Caroline Patricio Cardoso Nuclear and Energy Research Institute– IPEN-CNEN
  • Dr. Rafael H. L. Garcia Nuclear and Energy Research Institute– IPEN-CNEN
  • Dra. Elita F. U. de Carvalho Nuclear and Energy Research Institute– IPEN-CNEN
  • Dr. Mohamad Al-Sheikhly University of Maryland
  • Dra. Yasko Kodama Nuclear and Energy Research Institute– IPEN-CNEN https://orcid.org/0000-0002-0127-8130

DOI:

https://doi.org/10.15392/2319-0612.2024.2607

Keywords:

Uranium adsorption, ionizing radiation grafting, fuel element production

Abstract

Fuel elements production by IPEN-CNEN has a perspective to be increased to attend Brazilian Multipurpose Reactor, under construction. This production generates liquid waste that requires proper treatment to minimize environmental impacts, promoting more sustainable practices. Considering the rise on nuclear power energy generation, and that there is global lack of terrestrial uranium sources, the increasing demand for this element has been leading to uranium exploit alternatives. So, several researches are available on uranium adsorption from sea water. Adsorption is one of process for removing metals from wastewater, due to its high selectivity and low environmental impact. Taking into account this scenary, in this study, Winged Polypropylene (WPP) fabric was grafted via ionizing radiation (RIG) with the monomer Bis[2-(methacryloyloxy) ethyl] phosphate (B2MP). RIG promotes functionalization of WPP with phosphate groups that are prone to capture U from solution. Synthesized WPP-g-polyB2MP membranes were characterized by Scanning electron microscopy (SEM), Raman spectroscopy, thermogravimetry and, uranium adsorption capacity by ICP-OES and gamma spectrometry. WPP-g-polyB2MP membranes were successfully synthesized by ionizing radiation grafting direct method. Reaction parameters, like reactants concentration, radiation absorbed dose, affected the degree of grafting (DoG). By physico-chemical characterization results it was possible to observe DoG differences with parameters variation. Optimization of these parameters was sought in order to achieve uranium adsorption, and to increase the adsorption capacity of the membrane.

Downloads

Download data is not yet available.

References

[1] Comissão Nacional de Energia Nuclear. Reator Multipropósito Brasileiro. Disponível em: https://www.gov.br/cnen/pt-br/rmb/o-que-e-o-rmb-reator-multiproposito-brasileiro. Acesso em: 13 ago. 2024.

[2] COSTA, R. S. Avaliação da influência do ajuste entre moldura e briquete na deformação do núcleo de placas combustíveis. São Paulo: IPEN-USP, 2020. p. 55.

[3] Instituto de Engenharia Nuclear. Recebimento de rejeitos radioativos. Disponível em: https://www.gov.br/ien/pt-br/servicos/recebimento-de-rejeitos/recebimento-de-rejeitos-radioativos. Acesso em: 13 ago. 2024.

[4] Comissão Nacional de Energia Nuclear. NN 8.02: licenciamento de depósitos de rejeitos radioativos de baixo e médio níveis de radiação. Rio de Janeiro: CNEN, 2014.

[5] Comissão Nacional de Energia Nuclear. CNEN NN 2.06 Proteção Física de Fontes Radioativas e Instalações Radiativas Associadas. Rio de Janeiro: CNEN, 2019.

[6] RIBAS, F. B. T.; SILVA, W. L. da. Biossorção: uma revisão sobre métodos alternativos promissores no tratamento de águas residuais. Revista Matéria (Rio de Janeiro), v. 27, n. 2, 2022 DOI: https://doi.org/10.1590/s1517-707620220002.1312

[7] WIECHERT, A. I. et al. Uranium Recovery from Seawater Using Amidoxime-Based Braided Polymers Synthesized from Acrylic Fibers. Industrial & Engineering Chemistry Research, v. 59, n. 31, p. 13988-13996, 2020. Doi: 10.1021/acs.iecr.0c01573. DOI: https://doi.org/10.1021/acs.iecr.0c01573

[8] TORKAMAN, R.; MALEKI, F.; GHOLAMI, M.; TORAB-MOSTAEDI, M.; ASADOLLAHZADEH, M. Assessing the radiation-induced graft polymeric adsorbents with emphasis on heavy metals removing: A systematic literature review. Journal of Water Process Engineering, v. 44, 2021. Doi: 10.1016/j.jwpe.2021.102371. DOI: https://doi.org/10.1016/j.jwpe.2021.102371

[9] ZUBAIR, N. A.; MOAWIA, R. M.; NASEF, M. M.; HUBBE, M.; ZAKERI, M. A Critical Review on Natural Fibers Modifications by Graft Copolymerization for Wastewater Treatment. Journal of Polymers and the Environment, v. 30, n. 4, p. 1199-1227, 2022. Doi: 10.1007/s10924-021-02269-1. DOI: https://doi.org/10.1007/s10924-021-02269-1

[10] PRASAD, T. L.; TEWARI, P. K.; SATHIYAMOORTHY, D. Parametric Studies on Radiation Grafting of Polymeric Sorbents for Recovery of Heavy Metals from Seawater. Industrial & Engineering Chemistry Research, v. 55, n. 15, p. 6559-6565, 2010. Doi: 10.1021/acs.iecr.5b03401. DOI: https://doi.org/10.1021/ie100326q

[11] DAS, A.; JAGANNATH, J.; GUPTA, N.; BANERJEE, R. H.; ANITHA, M.; SINGH, D. K. Selective Removal of Uranium from Aqueous Streams Using Synergistic Adsorbents. 2022.. DOI: https://doi.org/10.2139/ssrn.4490103

[12] TISSOT, C. N. Radiation-Grafted Fabrics for the Extraction of Uranium from Seawater. Materials Science and Environmental Science, v. 0, p. 218-249, 2014. Doi: 10.13016/M2X62V.

[13] PINAEVA, U.; et al. Bis[2- (methacryloyloxy) ethyl] phosphate radiografted into track-etched PVDF for uranium (VI) determination by means of cathodic stripping voltammetry. Reactive & Functional Polymers, v. 142, 2019. Doi: 10.1016/j.reactfunctpolym.2019.06.006. DOI: https://doi.org/10.1016/j.reactfunctpolym.2019.06.006

[14] DIETZ, T. C.; et al. Uranium Removal from Seawater by Means of Polyamide 6 Fibers Directly Grafted with Diallyl Oxalate through a Single-Step, Solvent-Free Irradiation Process. Industrial & Engineering Chemistry Research, v. 55, n. 15, p. 4179-4186, 2015. Doi: 10.1021/acs.iecr.5b03401. DOI: https://doi.org/10.1021/acs.iecr.5b03401

[15] MALISKA, A. M. Microscopia Eletrônica de Varredura. Técnicas de Nanocaracterização. Universidade Federal de Santa Catarina, p. 1-42, 2015. Doi: 10.1016/b978-85-352-8091-3.50010-5. DOI: https://doi.org/10.1016/B978-85-352-8091-3.50010-5

[16] ORLANDO, A.; et al. A Comprehensive Review on Raman Spectroscopy Applications. Chemosensors, v. 9, n. 9, p. 1-28, 2021. DOI: https://doi.org/10.3390/chemosensors9090262

[17] DA SILVA, E. C.; DE PAOLA, M. V. R. V.; MATOS, J. D. R. Análise térmica aplicada à cosmetologia. Revista Brasileira de Ciências Farmacêuticas, v. 43, n. 3, p. 347-356, 2007. Doi: 10.1590/s1516-93322007000300004. DOI: https://doi.org/10.1590/S1516-93322007000300004

[18] CORREIA, Z. C. A.; ROSTELATO, M. E. C. M. Estudo e calibração de detector HPGe para análise radionuclídica de iodo-125. International Joint Conference Radio 2019

[19] TISSOT, C.; et al. A Highly Regenerable Phosphate-Based Adsorbent for Uranium in Seawater: Characterization and Performance Assessment Using 233U Tracer. Separation Science and Technology, v. 57, n. 3, p. 388-407, 2022. Doi: 10.1080/01496395.2021.1917612. DOI: https://doi.org/10.1080/01496395.2021.1917612

[20] PINAEVA, U.; et al. An Uranyl Sorption Study Inside Functionalised Nanopores. Scientific Reports, v. 10, n. 1, p. 1-10, 2020. Doi: 10.1038/s41598-020-62792-4. DOI: https://doi.org/10.1038/s41598-020-62792-4

[21] AL-SHEIKHLY, M.; KUNG, S.; BRITT, P. Enhancement of Extraction of Uranium from Seawater Fuel Cycle Research and Development. Disponível em: https://www.osti.gov/servlets/purl/1329194. Acesso em: 13 ago. 2024.

[22] TISSOT, C. N. Radiation-Grafted Fabrics for the Extraction of Uranium from Seawater. Materials Science and Environmental Science, v. 01, p. 1-23, 2016.

[23] GOPANNA, A.; MANDAPATI, R. N.; THOMAS, S. P.; RAJAN, K.; CHAVALI, M. Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy and Wide-Angle X-Ray Scattering (WAXS) of Polypropylene (PP) /Cyclic Olefin Copolymer (COC) Blends for Qualitative and Quantitative Analysis. Polymer Bulletin, v. 76, n. 8, p. 4259-4274, 2019. Doi: 10.1007/s00289-018-2599-0. DOI: https://doi.org/10.1007/s00289-018-2599-0

[24] FURUKAWA, T.; WATARI, M.; SIESLER, H. W.; OZAKI, Y. Discrimination of Various Poly (propylene) Copolymers and Prediction of Their Ethylene Content by Near-Infrared and Raman Spectroscopy in Combination with Chemometric Methods. Journal of Applied Polymer Science, v. 87, n. 4, p. 616-625, 2003. Doi: 10.1002/app.11351. DOI: https://doi.org/10.1002/app.11351

Downloads

Published

2024-12-23

How to Cite

Polymeric membranes grafted by ionizing radiation for uranium adsorption. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 4A (Suppl.), p. e2607, 2024. DOI: 10.15392/2319-0612.2024.2607. Disponível em: https://www.bjrs.org.br/revista/index.php/REVISTA/article/view/2607. Acesso em: 1 may. 2025.