Accumulated dose stability parameters in p-type and n-type silicon diodes

Authors

  • Kelly Pascoalino Instituto de Pesquisas Energéticas e Nucleares
  • Josemary A. C. Gonçalves Instituto de Pesquisas Energéticas e Nucleares
  • Fabio de Camargo Amazônia Azul Tecnologias de Defesa S. A.
  • Carmen C. Bueno Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP

DOI:

https://doi.org/10.15392/2319-0612.2024.2601

Keywords:

silicon diodes, rad-hard diodes, radiation processing dosimetry, high-dose dosimetry

Abstract

This work investigates the influence of doping type on the dose responses and the accumulated dose stability of n- and p-type silicon MCz diodes. The operating principle of diode-based dosimeters relies on measuring the radiation-induced currents delivered by non-polarized diodes throughout the exposure time. An electrometer promptly reads the current signal, linearly dose rate dependent. The offline integration of the current signal provides the charge generated in the sensitive volume of the diode, expected to be proportional to the absorbed dose. The experimental approach involves analyzing the repeatability of the current signals, the dose responses of both pristine and pre-irradiated diodes, the correspondent charge sensitivities, and the sensitivity decay with increasing doses. For doses up to 175 kGy, the results reveal a linear dose response of the MCz(p) diode, characterized by a charge sensitivity of 3.1 µC/Gy.  Within the same dose range, the response of the MCz(n) diode is visibly saturated and given by a fourth-order polynomial function. This saturation effect is likely linked to radiation damage effects manifesting in the current decay with increasing accumulated doses. This surmise is confirmed in this work by a less pronounced drop in sensitivity of the p-type diode than that recorded for the n-type diode when both are subjected to 175 kGy. This behavior is ascribed to the working principle of the diode in the short-circuit current mode and the differences between the diffusion lengths of minority carriers in n- and p-type silicon materials. The diodes' response stability and dose lifespan remain to be further investigated.

Downloads

Download data is not yet available.

References

[1] MOLL, M. Displacement Damage in Silicon Detectors for High Energy Physics. IEEE Trans. on Nucl. Sci., 65 (8), 1561, 2018. DOI: https://doi.org/10.1109/TNS.2018.2819506

[2] PELLEGRINI, G.; RAFÍ, J.M.; ULLÁN, M.; LOZANO, M.; FLETA, C.; CAMPABADAL, F. Characterization of magnetic Czochralski silicon radiation detectors. Nucl. Instrum. Method A., v. 548, n.3, p. 355-63, 2005. DOI: https://doi.org/10.1016/j.nima.2005.05.001

[3] LIAO, C. ; FRETWURST, E. ; GARUTTI, E. ; SCHWANDT, J. ; PINTILIE, I. ; NITESCU, A. ; HIMMERLICH, A. ; MOLL, M. ; GURIMSKAYA, Y. ; LI, Z. Investigation of high resistivity p-type FZ silicon diodes after 60Co γ-irradiation. Nucl. Instrum. Method A., v. 1061, p. 169103, 2024. DOI: https://doi.org/10.1016/j.nima.2024.169103

[4] CAMARGO, F.; GONÇALVES, J. A. C.; KHOURY, H. J.; NAPOLITANO, C. M.; HÄRKÖNEN, J.; BUENO, C. C. MCz diode response as a high-dose gamma radiation dosimeter. Rad. Meas., v.43, p. 1160-2, 2008. DOI: https://doi.org/10.1016/j.radmeas.2007.11.032

[5] GONÇALVES, J. A. C.; MANGIAROTTI, A.; BUENO, C. C. Current response stability of a commercial PIN photodiode for low dose radiation processing applications. Rad. Phys. Chem., v. 167, p. 108276-9, 2020. DOI: https://doi.org/10.1016/j.radphyschem.2019.04.026

[6] BUENO, C. C.; CAMARGO, F.; GONÇALVES, J. A. C.; PASCOALINO, K.; MANGIAROTTI, A.; TUOMINEN, E.; HÄRKÖNEN, J. Performance Characterization of Dosimeters Based on Radiation-Hard Silicon Diodes in Gamma Radiation Processing. Front. Sens., v. 3, p. 770482-93, 2022. DOI: https://doi.org/10.3389/fsens.2022.770482

[7] HÄRKÖNEN, J. Development of Radiation Hard Particle Detectors Made of Czochralski Grown Silicon. Acta Phys. Pol. A, v.124, p. 372-6, 2013. DOI: https://doi.org/10.12693/APhysPolA.124.372

[8] ISO/ASTM 51702. Standard Practice for Dosimetry in a Gamma Facility for Radiation Processing. 3rd ed. ISO. Geneva, Switzerland, 2013.

[9] ISO/ASTM 52628. Standard Practice for Dosimetry in Radiation Processing. 1st ed. ISO.Geneva, Switzerland, 2013.

[10] ICRU Report 80. International Commission on Radiation Units and Measurements, Dosimetry Systems for Use in Radiation Processing, ICRU Report 80 (International Commission on Radiation Units and Measurements), 2008.

[11] IEC 61674. International Electrotechnical Commission, Medical Electrical Equipment - Dosimeters with Ionization Chambers and/or Semiconductor Detectors as Used in X-Ray Diagnostic Imaging, second ed. 2024.

[12] DIXON, R.; EXTRAND, K. Silicon Diode Dosimetry. Int J Appl Radiat Isot., v.33, p. 1171-6, 1982. DOI: https://doi.org/10.1016/0020-708X(82)90242-3

[13] RIKNER, G.; GRUSELL, E. Effects of Radiation Damage on P-Type Silicon Detectors. Phys Med Biol., v. 28, n. 11, p. 1261-7, 1983. DOI: https://doi.org/10.1088/0031-9155/28/11/006

[14] RIKNER, G.; GRUSELL, E. General Specifications for Silicon Semiconductors for Radiation Dosimetry. Phys Med Biol., v. 32, n. 9, p. 1109-17, 1987. DOI: https://doi.org/10.1088/0031-9155/32/9/004

[15] JURSINIC, P. A. Implementation of an in vivo diode dosimetry program and changes in diode characteristics over a 4-year clinical history. Med. Phys., v.28, n.8, p. 1718-26, 2001. DOI: https://doi.org/10.1118/1.1388217

Downloads

Published

2025-02-12

How to Cite

Accumulated dose stability parameters in p-type and n-type silicon diodes. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 4A (Suppl.), p. e2601, 2025. DOI: 10.15392/2319-0612.2024.2601. Disponível em: https://www.bjrs.org.br/revista/index.php/REVISTA/article/view/2601. Acesso em: 1 may. 2025.