Pretreatment of Biomass with Gamma Rays and Electron Beam for Ethanol Production via Enzymatic Hydrolysis: A Brief Review

Authors

  • Leonardo Varella Centro de Desenvolvimento da Tecnologia Nuclear (CDTN)
  • Dr. Amir Mesquita Centro de Desenvolvimento da Tecnologia Nuclear (CDTN)
  • Dr. Daniel de Rezende Universidade Federal de Minas Gerais (UFMG)
  • Dra. Erika Cren Universidade Federal de Minas Gerais (UFMG)
  • Vitor de Almeida Centro de Desenvolvimento da Tecnologia Nuclear (CDTN)
  • Walewska Silva Centro de Desenvolvimento da Tecnologia Nuclear (CDTN)
  • Dra. Thessa Alonso Centro de Desenvolvimento da Tecnologia Nuclear (CDTN)

DOI:

https://doi.org/10.15392/2319-0612.2024.2575

Keywords:

lignocellulosic biomass, irradiation pretreatment, second-generation ethanol, water radiolysis

Abstract

 Lignocellulosic biomass, sourced from non-edible plant materials like bagasse, straw, and other agricultural residues, represents a sustainable alternative to fossil fuels, contributing to a reduction in greenhouse gas emissions. Effective pretreatment is essential for modifying the structural integrity of biomass, thereby increasing the accessibility of cellulose and hemicellulose for enzymatic hydrolysis. This paper analyzes two pretreatment methodologies, highlighting the role of gamma-ray and electron beam irradiation. These methods leverage photons and high-energy particles to induce structural and chemical modifications in lignocellulosic biomass, which facilitate a more efficient breakdown into fermentable sugars during hydrolysis. This work showed that both irradiation methods not only increase the yield of fermentable sugars but also do it without the need for hazardous chemicals, thus presenting an environmentally benign alternative to conventional pretreatment methods and presents the potential of these irradiation techniques in streamlining bioethanol production processes, advocating for further research and technological development to fully harness their benefits in industrial applications.

Downloads

Download data is not yet available.

Author Biographies

  • Leonardo Varella, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN)

    PhD Student at the Nuclear Technology Development Center (CDTN)

  • Dr. Amir Mesquita, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN)

    Research professor at Centro de Desenvolvimento da Tecnologia Nuclear (CDTN).

  • Dr. Daniel de Rezende, Universidade Federal de Minas Gerais (UFMG)

    Professor in the Department of Chemical Engineering at Universidade Federal de Minas Gerais

  • Dra. Erika Cren, Universidade Federal de Minas Gerais (UFMG)

    Professor in the Department of Chemical Engineering at UFMG.

  • Vitor de Almeida, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN)

    PhD Student at the Nuclear Technology Development Center (CDTN)

  • Walewska Silva, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN)

    PhD Student at the Nuclear Technology Development Center (CDTN)

  • Dra. Thessa Alonso, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN)

    Chief of the Gamma Irradiator Laboratory at the Nuclear Technology Development Center (CDTN)

References

[1] GUPTA, R. B.; DEMIRBAS, A. Gasoline, Diesel and Ethanol Biofuels from Grasses and Plants. New York, NY, US: Cambridge University Press, 2010. ISBN 978-0-521-76399-8. DOI: https://doi.org/10.1017/CBO9780511779152

[2] FURLAN, F. F.; TONON, R. F.; PINTO, F. H. P. B.; COSTA, C. B. B.; CRUZ, A. J. G.; GIORDANO, R. L. C.; GIORDANO R. C. Bioelectricity versus bioethanol sugarcane bagasse: is it worth being flexible?. Biotechnology for biofuels, v.6, n. 142, 2013. DOI: https://doi.org/10.1186/1754-6834-6-142

[3] WILLIAMS, C. L.; DAHIYA, A.; PORTER, P. Introduction to bioenergy. In: DAHIYA, A. Bioenergy – Biomass to Biofuels. Kidlington, OX, UK: Academic Press, 2015. ISBN 978-0-12-407909-0.

[4] KALAK, T. Potential use of industrial biomass waste as a sustainable energy source in the future. Energies, v. 16, n. 4, 2023. DOI: https://doi.org/10.3390/en16041783

[5] WERTZ, J. L.; DÉDUÉ, O.; MERCIER, J. P. Cellulose science and technology. Lausanne, CH, Swiss: EPFL Press, 2010. ISBN 978-1-4398-0799-6.

[6] WERTZ, J. L.; DELEU, M.; COPPÉE, S.; RICHEL, A. Hemicelluloses and lignin in biorefineries, Boca Raton, FL, US: CRC Press, 2018. ISBN 978-1-1387-2098-5. DOI: https://doi.org/10.1201/b22136-1

[7] FENGEL, D.; WEGENER, G. Wood: Chemistry, Ultrastructure reactions. Berlin and New York : Walter de Gruyter, 1984. DOI: https://doi.org/10.1515/9783110839654

[8] DUARTE, C. L. Irradiation of sugarcane bagasse for ethanol production. In: AL-ASSAF, S.; COQUERET, X.; DAHLAN, K. Z. H. M.; SEN, M.; ULANSKI, P. The Radiation Chemistry of Polysaccharides. Vienna, AUT: IAEA, 2016.

[9] SHARMA, D.; SAINI, A. Lignocellulosic Ethanol Production from a Biorefinery Perspective. Singapore: Springer, 2020. ISBN 978-981-15-4573-3. DOI: https://doi.org/10.1007/978-981-15-4573-3

[10] AMARASEKARA, A. S. Handbook of Cellulosic Ethanol. Hoboken, NJ, US: John Wiley & Sons, 2014. ISBN 978-1-118-23300-9.

[11] BAJPAI, P. Advances in Bioethanol. New Delhi, IN: 2013. 978-81-322-1584-4.

[12] MAKUUCHI, K .; CHENG, S. Radiation Processing of Polymer Materials and its Industrial Applications. Hoboken, NJ, US: John Wiley & Sons, 2012. ISBN 978-0-470-58769-0.

[13] AL-ASSAF, S. Polysaccharides: origin, source and properties. In: AL-ASSAF, S.; COQUERET, X.; DAHLAN, K. Z. H. M.; SEN, M.; ULANSKI, P. The Radiation Chemistry of Polysaccharides. Vienna, AUT: IAEA, 2016. ISBN 978-92-0-101516-7.

[14] COQUERET, X.; SABHARWAL, S.; ZAMAN, H. M. D. K.; CZECHOWSKA-BISKUP, R.; WACH, R. A.; ROSIAK, J. M.; ULANSKI, P.; GULREZ, S. K. H.; AL-ASSAF, S. Introduction to the Radiation Chemistry of Polymers. In: AL-ASSAF, S.; COQUERET, X.; DAHLAN, K. Z. H. M.; SEN, M.; ULANSKI, P. The Radiation Chemistry of Polysaccharides. Vienna, AUT: IAEA, 2016. ISBN 978-92-0-101516-7.

[15] CHMIELEWSKI, A. G.; HAJI-SAEID, M. Radiation sources and accelerators. In: RAMAMOORTHY, N. Advanced Radiation Technology. London, UK: World Nuclear University, 2019.

[16] INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA). Gamma Irradiators for Radiation Processing. Vienna, AUT: IAEA, 2006.

[17] DROBNY, J. G. Ionizing Radiation and Polymers: Principles, Technology and Applications. New York, NY, US: Elsevier, 2013.

[18] LADEIRA, L. C. D. ; PINTO, F. C. Relatório de análise de segurança do Laboratório de Irradiação Gama. Belo Horizonte, 2002.

[19] GUAL, M. R. ; MESQUITA, A. Z. ; RIBEIRO, E. ; GROSSI, P. Shielding Verifications of a Gamma Irradiation Facility Considering the Installation of a New Automatic Product Loading System. Science and Technology of Nuclear Installations, v. 2017, p. 1 – 6, 2017. DOI: https://doi.org/10.1155/2017/7408645

[20] HAN, Y. W.; CATALANO, E. A.; CIEGLER, A. Chemical and physical properties of sugarcane bagasse irradiated with γ rays. J. Agric. Food Chem, v. 31, p. 34-38 1983. DOI: https://doi.org/10.1021/jf00115a009

[21] KAPOOR, K.; GARG, N.; DIWAN R. K.; VARSHNEY, L.; TYAGI A. K. Study the effect of gamma radiation pretreatment of sugarcane bagasse on its physico-chemical morphological and structural properties. Radiation Physics and Chemistry, v. 141, p. 190–195, 2017. DOI: https://doi.org/10.1016/j.radphyschem.2017.07.010

[22] VARELLA, L. Y. Z.; MESQUITA, A. Z.; REZENDE, D. B.; MOURÃO, I. G.; CREN, E. C.; LOPES, N. P.; SILVA, W. G.; ALONSO, T. C. Experimental evaluation of the use of gamma radiation in sugarcane bagasse (Saccharum spp.) as a pretreatment for bioethanol production. Radiation Physics and Chemistry, v. 218, article 111611, 2024. DOI: https://doi.org/10.1016/j.radphyschem.2024.111611

[23] WANG, K.; XIONG, X.; CHEN, J.; CHEN L.; SU, X.; LIU, Y. Comparison of gamma irradiation and steam explosion pretreatment for ethanol production from agricultural residues. Biomass and bioenergy, v. 46, p. 301–308, 2012. DOI: https://doi.org/10.1016/j.biombioe.2012.08.013

[24] RIBEIRO, M. A.; CARDOSO, V. M.; MORI, M. N.; FINGUERUT, J.; GALVÃO, C. M. A.; DUARTE, C. L. Electron beam processing of sugarcane bagasse to cellulose hydrolysis, Internacional Nuclear Atlantic Conference (INAC), 2009.

[25] BAK, J. S.; KO, J. K.; HAN, Y. H.; LEE, B. C.; CHOI, I. G.; KIM, K. H. Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresource Technology, v. 100, n. 3, p. 1285–1290, 2009. DOI: https://doi.org/10.1016/j.biortech.2008.09.010

[26] KAPOOR, K.; TYAGI, A. K.; DAS, M.; KUMAR, V. Comparative Analysis of morphological and structural changes in gamma and electron beam irradiated sugarcane bagasse. Cellulose chemistry and technology, v. 57, p. 61–70, 2023. DOI: https://doi.org/10.35812/CelluloseChemTechnol.2023.57.06

[27] Radiation Laboratory University of Malaya (UM). Available at: https://www.umradiation.com/services (2024). Accessed on: 12 Jul. 2024.

[28] Business Wire. NorthStar Medical Radioisotopes sets new industry precedent in advancing non-uranium-based commercial production of molybdenum-99 (Mo-99) Available at: https://www.businesswire.com/news/home/20230111005205/en/NorthStar-Medical-Radioisotopes-Sets-New-Industry-Precedent-in-Advancing-Non-uranium-based-Commercial-Production-of-Molybdenum-99-Mo-99/ (2025). Accessed on: 03 Jan. 2025.

Downloads

Published

2025-03-10

How to Cite

Pretreatment of Biomass with Gamma Rays and Electron Beam for Ethanol Production via Enzymatic Hydrolysis: A Brief Review. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 4A (Suppl.), p. e2575, 2025. DOI: 10.15392/2319-0612.2024.2575. Disponível em: https://www.bjrs.org.br/revista/index.php/REVISTA/article/view/2575. Acesso em: 1 may. 2025.