A Monte Carlo Simulation study on the design and optimization of collimators for non-collinear cascade gamma-ray correlation emissions in medical imaging

Authors

  • Leonid Leopold Nkuba Tanzania Atomic Energy Commission
  • Innocent Lugendo Department of Physics, University of Dar es Salaam, Physics Building, Uvumbuzi Road, P.O. Box 35063, Dar es Salaam, Tanzania

DOI:

https://doi.org/10.15392/2319-0612.2025.2573

Keywords:

GATE Monte Carlo simulation, Cascade gamma-rays, Optimized collimator design, Medical image reconstruction, GATE

Abstract

This study focused on designing and optimizing collimators for cascade gamma-ray imaging through Monte Carlo simulations. The trapezoidal-shaped collimator blocks, designed in the Geant4 application for emission tomography (GATE) environment, were attached to a simulated small animal GATE - PET model. The collimators were optimized by simulating septa thicknesses from 0.2 mm to 1.2 mm, in 0.2 mm increments. A 1.0 MBq 111In source having radius of 0.25 mm was used as the cascade gamma-ray emitter. Sixteen trapezoidal tungsten collimator blocks were designed, each with a 16.31 mm × 37.5 mm surface facing the detector crystals, and a 12.33 mm × 37.5 mm surface facing the scanned object. Each block featured 105 parallel rectangular holes arranged in a 7 × 15 array, with a length of 10.0 mm, resulting in a ring-like collimator with a 41.0 mm outer radius. The designed collimator, intended for small animal imaging, prioritizes resolution. Hence, a collimator with 1.0 mm septa and hole sizes of 1.5 mm × 0.7 mm, offering spatial resolutions of 7.6 mm and 4.1 mm in the axial and transaxial directions, respectively, was chosen. The collimators demonstrated energy resolution of approximately 8.96% and 10.10% at 171.3 keV and 245.4 keV, respectively, within a 10% energy resolution threshold set during simulations. Besides, the reconstructed source positions ranged from 81.1% to 100% of the true simulated source positions within the field of view. The optimized collimator design presents a viable solution for imaging small animals’ internal organs, with sizes exceeding 7.6 mm.

Downloads

Download data is not yet available.

References

PAHLKA, R.B,; KAPPADATH, S.C,; MAWLAWI, O.R. A Monte Carlo simulation of coincidence detection and imaging of gamma-ray cascades with a scintillation camera. Biomed. Phys. Eng. Express, 4: 055012, 2018. DOI: https://doi.org/10.1088/2057-1976/aad572

SAFFER, J.R,; BARRETT, H.H,; BARBER, H.B,; WOOLFENDEN, J.M. Surgical probe design for a coincidence imaging system without a collimator. Image Vis. Comput, 511 LNCS, p. 333–341, 1992. DOI: https://doi.org/10.1016/0262-8856(92)90019-Y

BUTZ, T. Nuclear quadrupole interactions studied by time differential perturbed angular correlations of γ-rays. Zeitschrift fur Naturforsch. - Sect. A J. Phys. Sci, v. 51, p. 396–410, 1996. DOI: https://doi.org/10.1515/zna-1996-5-614

HEMMINGSEN, L,; SAS, K.N,; DANIELSEN, E. Biological Applications of Perturbed Angular Correlations of γ-Ray Spectroscopy. Chem. Rev, v. 104, p. 4027–4061, 2004. DOI: https://doi.org/10.1021/cr030030v

CHIANG, C.C,; CHUANG, C.C,; NI, Y.C,; JAN, M.L,; CHUANG, K.S,; LIN, H.H. Time of flight dual photon emission computed tomography. Sci. Rep, v. 10, p. 1–13, 2020. DOI: https://doi.org/10.1038/s41598-020-76526-z

UENOMACHI, M,; SHIMAZOE, K,; OGANE, K,; TAKAHASHI, H. Simultaneous multi-nuclide imaging via double-photon coincidence method with parallel hole collimators. Sci. Rep, v. 11:13330, 2021. DOI: https://doi.org/10.1038/s41598-021-92583-4

RANGACHARYULU, C,; LAI, THI KHANH. L,; OLSHANOSKI, K,; SANTOSH, S,; NKUBA, L.L,; FUKUCHI, T,; FUKUDA, M,; KANDA, H,; MSAKI, P.K,; SAI, K.V,; TAKAHASHI, N. Development of a Nuclear Gamma Cascade Correlations Based Medical Imaging System - A Novel Modality with Potentials for Replacement of SPECT and PET. International Conference on Clinical PET-CT and Molecular Imaging in the Era of Theranostics (IPET), Book of Abstract-IPT 2020, IAEA-CN-285/110, 2021.

SHIMAZOE, K,; UENOMACHI, M,; MIZUMACHI, Y,; TAKAHASHI, H,; MASAO, Y,; SHOJI, Y,; KAMADA, K,; YOSHIKAWA, A. Double Photon Emission Coincidence Imaging using GAGG-SiPM pixel detectors. J. Instrum, v. 12 C12055, 2017. DOI: https://doi.org/10.1088/1748-0221/12/12/C12055

SANTHOSH, R.S,; SHYAM, D.S,; FUKUCHI, T,; RANGACHARYULU, C,; VENKATARAMANIAH, K,; SAI, K.V. Design and Optimization of a Collimator for a New PET system using GATE simulation. In: PROCEEDINGS, 64TH DAE BRNS SYMPOSIUM ON NUCLEAR PHYSICS, 2019 Lucknow (Uttar Pradesh), India, p. 852-853, 2019.

BRADY, E,; DEUTSCH, M. The angular correlation of successive gamma-rays. Phys. Rev, v. 78, p. 558–566, 1950. DOI: https://doi.org/10.1103/PhysRev.78.558

SCHMITZ-FEUERHAKE, I. Studies on three-dimensional scintigraphy with gamma - gamma – coincidences. Phys. Med. Biol, v. 15: p. 649–656, 1970. DOI: https://doi.org/10.1088/0031-9155/15/4/004

MONAHAN, W.G,; POWELL, M.D. Three-Dimensional Imaging of Radionuclide Distribution by Gamma-Gamma Coincidence Detection In: Tomographic imaging in nuclear medicine, p. 165–175, 1972.

YAMAMOTO, S,; OKUMURA, S,; WATABE, T,; IKEDA, H,; KANAI, Y,; TOSHITO, T,; KOMORI, M,; OGATA, Y,; KATO, K,; HATAZAWA, J. Development of a prototype Open-close positron emission tomography system. Rev. Sci. Instrum, v. 86: p. 1–9, 2015. DOI: https://doi.org/10.1063/1.4929329

BUVAT, I,; CASTIGLIONI, I. Monte Carlo simulations in SPET and PET. Q J Nucl Med, v. 46, n. 1, p. 48-61, 2002.

SANTIN, G,; STRUL, D,; LAZARO, D,; SIMON, L,; KRIEGUER, M,; VIEIRA, M.M, et al. GATE, a Geant4-based simulation platform for PET integrating movement and time management. IEEE Nucl. Sci. Symp. Med. Imaging Conf, v. 50, n. 5, p. 1516–1521, 2003. DOI: https://doi.org/10.1109/TNS.2003.817974

BRUN, R,; RADEMAKERS, F. ROOT - An object oriented data analysis framework. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip, v. 389, p. 81–86, 1997. DOI: https://doi.org/10.1016/S0168-9002(97)00048-X

OKUMURA, S,; YAMAMOTO, S,; WATABE, H,; KATO, N,; HAMAMURA, H. Development of dual-layer GSO depth-of-interaction block detector using angled optical fiber. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip, v. 781, p. 65–70, 2015. DOI: https://doi.org/10.1016/j.nima.2015.01.102

FUKUCHI, T,; OKAUCHI, T,; SHIGETA, M,; YAMAMOTO, S,; WATANABE, Y,; ENOMOTO, S. Positron emission tomography with additional γ-ray detectors for multipletracer imaging. Med. Phys, v. 44, p. 2257–2266, 2017. DOI: https://doi.org/10.1002/mp.12149

NKUBA, L.L,; LUGENDO, I.J,; AMOUR, I.S. A GATE-based Monte Carlo simulation of a dual-layer pixelized gadolinium oxyorthosilicate (GSO) detector performance and response for micro PET scanner. Tanzania J. Sci, v. 47, n. 2, p. 507–519, 2021. DOI: https://doi.org/10.4314/tjs.v47i2.9

GUNTER, D.L. Collimator characteristics and design. In: Henkin, R. E et al.(Ed), Nuclear Medicine. Mosby-Year Book, 96–124, St. Louis; 1996.

GUNTER, D.L. Collimator Design for Nuclear Medicine. In: Wernick, M.N,; Aarsvold, J.N (Eds), Emission Tomography. The Fundamentals of PET and SPECT. Vol. X, 153–168, Elservia Academic Press. San Diego, Califonia; 2004. DOI: https://doi.org/10.1016/B978-012744482-6/50011-9

DEPREZ, K,; VANDENBERGHE, S,; VAN AUDENHAEGE, K,; VAN VAERENBERGH, J,; VAN HOLEN, R. Rapid additive manufacturing of MR compatible multipinhole collimators with selective laser melting of tungsten powder Med. Phys. 40: 1617–1634, 2013. DOI: https://doi.org/10.1118/1.4769122

MASSARI, R,; D’ELIA A, SOLURI A AND SOLURI A Super Spatial Resolution (SSR) method for small animal SPECT imaging: A Monte Carlo study. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip, v. 982: 164584, 2020. DOI: https://doi.org/10.1016/j.nima.2020.164584

SHIMAZOE, K,; UENOMACHI, M,; TAKAHASHI, H. 2022 Imaging and sensing of pH and chemical state with nuclear-spin-correlated cascade gamma rays via radioactive tracer. Communications Physics 5, Article No 24, p. 1-8, 2022. DOI: https://doi.org/10.1038/s42005-022-00801-w

JIN, Y,; MENG, L.J. Exploration of Coincidence Detection of Cascade Photons to Enhance Preclinical Multi-Radionuclide SPECT Imaging. IEEE Trans Med Imaging. Doi: 10.1109/TMI.2023.3348756, 2024. DOI: https://doi.org/10.1109/TMI.2023.3348756

UENOMACHI, M,; SHIMAZOE, K,; TAKAHASHI, H. A double photon coincidence detection method for medical gamma ray imaging. Bio-Algorithms and Med-Systems, v. 18, p. 120–126, 2022. DOI: https://doi.org/10.2478/bioal-2022-0080

SIMMS, P.C,; STEFFEN, R.M. Lifetime of the 247-keV excited state of 111Cd. Phys. Rev. v. 108, p. 1459–1461, 1957. DOI: https://doi.org/10.1103/PhysRev.108.1459

Open GATE Collaboration. Imaging Applications. Available at: https://opengate.readthedocs.io/en/latest/digitizer_and_detector_modeling.html#energy-resolution. Accessed on: 12 June 2024.

MATULEWICZ, T,; KORZECKA, K,; PYTEL, Z. Tests of GSO scintillator In: Annual Reports: Nuclear Physics Division. (Eds S. Zygmunt & M. Popkiewicz), PL9800110, p. 48–49, 1996.

NKUBA, L.L,; OLSHANOSKI, K,; FUKUCHI, T,; LUGENDO, I.J,; DANG, N.P,; RANGACHARYULU, C,; SAI, K.V. Monte Carlo simulations of the non-collinear gamma-ray cascade emissions for medical imaging. In: 11th INTERNATIONAL CONFERENCE ON ISOTOPES (11-ICI) AND EXPO, Saskatoon, Canada, July 23-27, 2023.

ZHANG, C,; SANG, Z,; WANG, X,; ZHANG, X,; YANG, Y. The effects of inter-crystal scattering events on the performance of PET detectors. Phys Med Biol, v. 64, n. 20, p. 1-9, 2019. DOI: https://doi.org/10.1088/1361-6560/ab44f4

LIU, X,; LIU, H,; CHENG, L,; WU, J,; BAO, T,; YAO R,; LIU, Y. A 3-dimensional stationary cascade gamma ray coincidence imager. Phys. Med. Biol, v. 66, n. 22: 225001, 2021. DOI: https://doi.org/10.1088/1361-6560/ac311b

OLSHANOSKI, K,; NKUBA, L.L,; DANG, N.P,; FUKUCHI, T,; KANDA, H,; LUGENDO I.J, SAI, K.V,;RANGACHARYULU, C. Collimator design for gamma-ray cascade angular correlations in medical imaging. J. Instrum, v. 18 C05010, 2023. DOI: https://doi.org/10.1088/1748-0221/18/05/C05010

SCOPINARO, F,; MASSARI, R,; VARVARIGOU AD, D'ALESSANDRIA, C,; TROTTA, C,; DI SANTO, G.P et al. High-resolution small animal single photon emission computed tomography: uptake of [99mTc]bombesin and [123I]ioflupane by rat brain. Q J Nucl Med Mol Imaging, v. 51, n. 2, p. 204-210, 2007.

VAN AUDENHAEGE, K,; VAN HOLEN, R,; VANDENBERGHE, S,; VANHOVE, C,; METZLER, S.D,; MOORE, S.C. Review of SPECT collimator selection, optimization, and fabrication for clinical and preclinical imaging. Med Phys. 2015, v. 42(8): 4796-813. doi: 10.1118/1.4927061. PMID: 26233207; PMCID: PMC5148182. DOI: https://doi.org/10.1118/1.4927061

DU, J,; JONES, T. Technical opportunities and challenges in developing total‑body PET scanners for mice and rats. EJNMMI Physics, v. 10, n. 2, https://doi.org/10.1186/s40658-022-00523-6, 2023. DOI: https://doi.org/10.1186/s40658-022-00523-6

Downloads

Published

2025-03-21

Issue

Section

Articles

How to Cite

A Monte Carlo Simulation study on the design and optimization of collimators for non-collinear cascade gamma-ray correlation emissions in medical imaging. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 13, n. 1, p. e2573, 2025. DOI: 10.15392/2319-0612.2025.2573. Disponível em: https://www.bjrs.org.br/revista/index.php/REVISTA/article/view/2573. Acesso em: 2 may. 2025.