Study of CdTe detector response functions using different MCNPX computational modeling detailing

Authors

  • A. M. Antunes Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN)
  • B. M. Mendes Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN)
  • P. L. Squair Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN)
  • M. S. Nogueira Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN)
  • A. T. Almeida-Jr Fundação Jorge Duprat Figueiredo de Segurança e Medicina do Trabalho
  • M. A. S. Lacerda Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN)

DOI:

https://doi.org/10.15392/2319-0612.2024.2497

Keywords:

X-ray spectra, Response Function, CdTe detector, MCNPX

Abstract

The spectra measured with cadmium telluride (CdTe) detectors show high spectral distortions that must be corrected by applying a mathematical algorithm along with the detector's response functions. Simplified computational modeling of the CdTe detector is generally used to obtain its response functions. In this work, the Monte Carlo code MCNPX was used to study the response functions of a CdTe detector using more complex detector modeling and compared it with those obtained by simplified modeling. Raw spectra were corrected using the response matrices obtained for the simplified and detailed modeling of the CdTe and compared with those obtained with reference-validated software.

Downloads

Download data is not yet available.

Author Biography

  • M. A. S. Lacerda, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN)
    Possui graduação em Engenharia Civil pela Universidade Federal de Ouro Preto (UFOP-1999), mestrado em Ciências e Técnicas Nucleares pela Universidade Federal de Minas Gerais (UFMG-2002) e doutorado em Tecnologias Energéticas e Nucleares pela Universidade Federal de Pernambuco (UFPE-2007). Atualmente é Pesquisador Titular do Centro de Desenvolvimento da Tecnologia Nuclear da Comissão Nacional de Energia Nuclear (CDTN/CNEN). Desenvolve pesquisas na área de Física Médica e Engenharia Nuclear com ênfase nos seguintes temas: Metrologia das Radiações, Método de Monte Carlo aplicado à Dosimetria das Radiações Ionizantes, Radioproteção.

References

Kurková, D., Judas, L. X-ray tube spectra measurement and correction using a CdTe detector and an analytic response matrix for photon energies up to 160 keV. Radiat. Meas. v.85, p.64-72., 2016. DOI: https://doi.org/10.1016/j.radmeas.2015.12.008

Miyajima, S., Imagawa, K., Matsumoto, M. CdZnTe detector in diagnostic x‐ray spectroscopy. Med. Phys. v.29, p.1421–1429, 2002. DOI: https://doi.org/10.1118/1.1485975

Tomal, A., Santos, J.C., Costa, P., Gonzales, A.L., Poletti, M. Monte Carlo simulation of the response functions of CdTe detectors to be applied in x-ray spectroscopy. Appl. Radiat. Isot. v.100, p.32-37, 2015. DOI: https://doi.org/10.1016/j.apradiso.2015.01.008

Knoll, G.F. Radiation detection and measurement. Hoboken, NJ: John Wiley & Sons, 2010.

Bonifácio, D.A.B. Validação do Geant4 para a produção e detecção de raios X na faixa de energia de radiodiagnóstico. Dissertação (Mestrado em Física) – Universidade de São Paulo, São Paulo, 2007.

Di Castro, E., Pani, R., Pellegrini, R., Bacci, C. The use of cadmium telluride detectors for the qualitative analysis of diagnostic x-ray spectra. Phys. Med. Biol. v.29, 1117, 1984. DOI: https://doi.org/10.1088/0031-9155/29/9/008

Kurková, D., Judas, L. An analytical X-ray CdTe detector response matrix for incomplete charge collection correction for photon energies up to 300 keV. Radiat. Phys. Chem. v.146, p.26-33, 2018. DOI: https://doi.org/10.1016/j.radphyschem.2018.01.003

LeClair, R.J., Wang, Y., Zhao, P., Boileau, M., Wang, L., Fleurot, F. An analytic model for the response of a CZT detector in diagnostic energy dispersive x‐ray spectroscopy. Med. Phys. v.33, p.1329-1337, 2006. DOI: https://doi.org/10.1118/1.2190331

Redus, R.H., Pantazis, J.A., Pantazis, T.J., Huber, A.C., Cross, B.J. Characterization of CdTe detectors for quantitative X-ray spectroscopy. IEEE Trans. Nucl. Sci. v.56, p.2524-2532, 2009. DOI: https://doi.org/10.1109/TNS.2009.2024149

Tomal, A., Cunha, D., Antoniassi, M., Poletti, M. Response functions of Si (Li), SDD and CdTe detectors for mammographic x-ray spectroscopy. Appl. Radiat. Isot. v.70, p.1355-1359, 2012. DOI: https://doi.org/10.1016/j.apradiso.2011.11.044

Seelentag, W., Panzer, W., Drexler, G., Platz, L., Santner, F. A catalogue of spectra for the calibration of dosemeters. Gesellschaft fuer Strahlen- und Umweltforschung m.b.H., Neuherberg (Germany, F.R.). Inst. fuer Strahlenschutz, 1979.

Almeida Jr, A. Caracterização de argamassas de barita como blindagens contra a radiação X e determinação experimental dos coeficientes de atenuação desses materiais, Tese (Doutorado em Engenharia de Materiais) – Universidade Federal de Ouro Preto, Ouro Preto, 2014.

Pelowitz, D.B. MCNPXTM User’s Manual, Version 2.7. 0. LA-CP-11-00438. Los Alamos Natl. Lab, United States of America, 2011.

White, M.C. Photoatomic data library MCPLIB03: An update to MCPLIB02 containing Compton profiles for Doppler broadening of incoherent scatteringIntern. Memo. X-5 MCW-02-110 -UR-03-0787, Los Alamos Natl. Lab. United States of America, 2002.

Adams, K. Electron upgrade for MCNP4B. Intern. Memo. X-5-RN U-00-14 May 25, Los Alamos Natl. Lab., United States of America, 2000.

X-5 Monte Carlo Team. MCNP - A General Monte Carlo N-Particle Transport Code, Version 5. LA-UR-03-1987, Los Alamos Natl. Lab., United States of America, 2008.

Stankovic, J., Marinkovic, P., Ciraj-Bjelac, O., Kaljevic, J., Arandjic, D., Lazarevic, D. Toward utilization of MCNP5 particle track output file for simulation problems in photon spectrometry. Comput. Phys. Commun. v.195, p.77-83, 2015. DOI: https://doi.org/10.1016/j.cpc.2015.05.003

Santos, J.C., Tomal, A., Furquim, T.A., Fausto, A.M., Nogueira, M.S., Costa, P.R. Direct measurement of clinical mammographic x‐ray spectra using a CdTe spectrometer. Med. Phys. v.44, p.3504-3511, 2017. DOI: https://doi.org/10.1002/mp.12287

Mendes, B.M., Squair, P.L., Figueiredo, M.T.T., Nogueira, M.S., 2018. Development of a methodology for CdTe detector spectra correction using MCNPx simulations, in: 14th International Symposium on Radiation Physics. Presented at the ISRP-14. 14th International Symposium on Radiation Physics, Córdoba.

R. Kunzel, Herdade, S.B., Terini, R.A., Costa, P.R. X-ray spectroscopy in mammography with a silicon PIN photodiode with application to the measurement of tube voltage. Med. Phys. v.31, p.2996-3003, 2004. DOI: https://doi.org/10.1118/1.1803432

Berger, M., Hubbell, J., Seltzer, S., Chang, J., Coursey, J., Sukumar, R., Zucker, D., Olsen, K., 2010. XCOM: photon cross section database (version 1.5),[Online] Available: http://physics. nist. gov/xcom, National Institute of Standards and Technology, Gaithersburg. Gaithersburg MD.

Downloads

Published

2024-11-08

Issue

Section

Articles

How to Cite

Study of CdTe detector response functions using different MCNPX computational modeling detailing. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 4, p. e2497, 2024. DOI: 10.15392/2319-0612.2024.2497. Disponível em: https://www.bjrs.org.br/revista/index.php/REVISTA/article/view/2497. Acesso em: 2 may. 2025.