Dose-effect calibration curve for high X-ray doses using the Calyculin-A chromosome premature condensation assay

Authors

  • Fabio-Andrés Chaves-Campos Health Research Institute, University of Costa Rica. https://orcid.org/0000-0003-3066-5495
  • Fernando Ortíz-Morales Health Research Institute, University of Costa Rica. San José, Costa Rica. https://orcid.org/0000-0002-9120-6308
  • Ricardo Mejías-Gamboa Health Research Institute, University of Costa Rica. San José, Costa Rica
  • Jorge Ernesto González-Mesa Centro de Protección e Higiene de las Radiaciones (CPHR), Habana, Cuba. https://orcid.org/0000-0001-7221-4604
  • Omar García-Lima Centro de Protección e Higiene de las Radiaciones (CPHR), Habana, Cuba https://orcid.org/0000-0002-0712-9734
  • Maria Paula Rodríguez-Valerio School of Health Technologies, University of Costa Rica. San José, Costa Rica
  • Walter Vargas-Segura Physics Department. Costa Rican Institute of Technology, ITCR. Cartago, Costa Rica.
  • Anthony Cordero-Ramírez Research Center in Materials Science and Engineering (CICIMA), University of Costa Rica, San José, Costa Rica

DOI:

https://doi.org/10.15392/2319-0612.2024.2422

Keywords:

biodosimetry, Calyculin-A, cytogenetic aberrations, radiation biology, radiation protection

Abstract

Purpose: This article shows the results of the Cytogenetics Laboratory of the Health Research Institute (INISA) to develop a dose-effect calibration curve with the Calyculin-A chemical induction premature condensation assay to estimate high doses of X-ray exposure. Methods: to create the calibration curve, peripheral blood samples from two participants (one female and one male) were exposed to X-rays at six different dose points ranging from 0 to 17.5 Gy in vitro. The irradiated blood was cultured for 48 hours according to international protocols, and the resulting chromosome rings were recorded. We used BioDoseTools software to calculate the coefficients for the calibration curve. Results: The coefficients of the curve are α: 0.028±0.001 and C: 0.001±0.001. These coefficients have similar values to those reported internationally. The curve was validated by calculating an unknown dose exposed to 6 Gy; the estimated dose was 5.651 ± 0.636 Gy, with no statistically significant differences between the dose delivered and the estimated dose. Conclusions: The INISA Biological Dosimetry Service can use the curve obtained to assess absorbed doses in cases of suspected overexposure to high X-ray doses.

Downloads

Download data is not yet available.

References

GARCÍA, O. ET AL., “The BioDoseNet image repository used as a training tool for the dicentric assay”, Int J Radiat Biol, vol. 95, no 12, p. 1659–1667, 2019, doi: https://doi.org/10.1080/09553002.2019.1665211.

GOTOH, E., “G2 Premature Chromosome Condensation/Chromosome Aberration Assay: Drug-Induced Premature Chromosome Condensation (PCC) Protocols and Cytogenetic Approaches in Mitotic Chromosome and Interphase Chromatin for Radiation Biology”, 2019, p. 47–60. doi: 10.1007/978-1-4939-9432-8_6. DOI: https://doi.org/10.1007/978-1-4939-9432-8_6

NAIRY, R. K. ET AL., “Standardization of CalyculinA induced PCC assay and its advantages over Okadaic acid PCC assay in Biodosimetry applications”, J Occup Health, vol. 58, no 6, p. 563–569, nov. 2016, doi: 10.1539/joh.16-0049-OA. DOI: https://doi.org/10.1539/joh.16-0049-OA

GUERRERO-CARBAJAL, C., I. ROMERO-AGUILERA, C. ARCEO-MALDONADO, J. E. GONZALEZ-MESA, G. E. CORTINA-RAMIREZ, e O. GARCIA-LIMA, “Dose response of prematurely condensed chromosome rings after gamma irradiation”, Int J Radiat Biol, vol. 95, no 5, p. 607–610, maio 2019, doi: 10.1080/09553002.2019.1566677. DOI: https://doi.org/10.1080/09553002.2019.1566677

INTERNATIONAL ATOMIC ENERGY AGENCY, “Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies”, Vienna, 2011. [Online]. Disponível em: http://www-ns.iaea.org/standards/

HATZI, V. I., G. I. TERZOUDI, C. PARASKEVOPOULOU, V. MAKROPOULOS, D. P. MATTHOPOULOS, e G. E. PANTELIAS, “The use of premature chromosome condensation to study the influence of environmental factors on human genetic material in interphase cells”, ScientificWorldJournal, vol. 6, p. 1174–1190, 2006, doi: 10.1100/tsw.2006.210. DOI: https://doi.org/10.1100/tsw.2006.210

CORNFORTH, M. N., S. BEDFORD, e S. M. BAILEY, “Destabilizing Effects of Ionizing Radiation on Chromosomes : Sizing up the Damage”, p. 328–351, 2021, doi: 10.1159/000516523. DOI: https://doi.org/10.1159/000516523

SISHC, B. J., C. B. NELSON, M. J. MCKENNA, C. L. R. BATTAGLIA, e C. TANZARELLA, “Telomeres and Telomerase in the radiation response : implications for instability , reprograming , and carcinogenesis”, Front Oncol, vol. 5, p. 1–19, 2015, doi: 10.3389/fonc.2015.00257. DOI: https://doi.org/10.3389/fonc.2015.00257

MURNANE, J. P., “Telomere dysfunction and chromosome instability”, Mutat Res., vol. 730, no 415, p. 28–36, 2013, doi: 10.1016/j.mrfmmm.2011.04.008.Telomere. DOI: https://doi.org/10.1016/j.mrfmmm.2011.04.008

XIAO, C., N. HE, Y. LIU, Y. WANG, e Q. LIU, “Research progress on biodosimeters of ionizing radiation damage”, Radiat Med Prot, vol. 1, no 3, p. 127–132, set. 2020, doi: 10.1016/j.radmp.2020.06.002. DOI: https://doi.org/10.1016/j.radmp.2020.06.002

INTERNATIONAL ATOMIC ENERGY AGENCY, “Dosimetry of Small Static Fields Used in External Beam Radiotherapy An International Code of Practice for Reference and Relative Dose Determination”, Vienna, 2017.

DIETERICH, S. ET AL., “Report of AAPM TG 135: Quality assurance for robotic radiosurgery”, Med Phys, vol. 38, no 6Part1, p. 2914–2936, maio 2011, doi: 10.1118/1.3579139. DOI: https://doi.org/10.1118/1.3579139

MISZCZYK, J., “Investigation of dna damage and cell-cycle distribution in human peripheral blood lymphocytes under exposure to high doses of proton radiotherapy”, Biology (Basel), vol. 10, no 2, p. 1–16, 2021, doi: 10.3390/biology10020111. DOI: https://doi.org/10.3390/biology10020111

RADL, A., M. TAJA, C. SAPIENZA, R. BUBNIAK, M. DEMINGE, e M. GIORGIO, “Biodosimetría para sobreexposiciones con altas dosis , utilizando condensación prematura de cromosomas ( PCC ) químicamente inducida”, em IX Congreso Regional de Seguridad Radiológica y Nuclear, 2013.

HERNÁNDEZ, A. ET AL., “Biodose Tools: an R shiny application for biological dosimetry”, Int J Radiat Biol, vol. 99, no 9, p. 1378–1390, set. 2023, doi: 10.1080/09553002.2023.2176564. DOI: https://doi.org/10.1080/09553002.2023.2176564

GARCÍA, O. ET AL., “The BioDoseNet image repository used as a training tool for the dicentric assay”, Int J Radiat Biol, vol. 95, no 12, p. 1659–1667, dez. 2019, doi: 10.1080/09553002.2019.1665211. DOI: https://doi.org/10.1080/09553002.2019.1665211

GARCIA, O. F. ET AL., “Intercomparison in cytogenetic dosimetry among five laboratories from Latin America”, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol. 327, no 1–2, p. 33–39, mar. 1995, doi: 10.1016/0027-5107(94)00066-E. DOI: https://doi.org/10.1016/0027-5107(94)00066-E

LLOYD, D. C. ET AL., “A collaborative exercise on cytogenic dosimetry for simulated whole and partial body accidental irradiation”, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol. 179, no 2, p. 197–208, ago. 1987, doi: 10.1016/0027-5107(87)90310-1. DOI: https://doi.org/10.1016/0027-5107(87)90310-1

MIURA, T. e W. F. BLAKELY, “Optimization of calyculin A-induced premature chromosome condensation assay for chromosome aberration studies”, Cytometry Part A, vol. 79A, no 12, p. 1016–1022, dez. 2011, doi: 10.1002/cyto.a.21154. DOI: https://doi.org/10.1002/cyto.a.21154

INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION, “The 2007 Recommendations of the International Commission on Radiological Protection”, 2007.

ROY, L. ET AL., “International intercomparison for criticality dosimetry: the case of biological dosimetry”, Radiat Prot Dosimetry, vol. 110, no 1–4, p. 471–476, ago. 2004, doi: 10.1093/rpd/nch349. DOI: https://doi.org/10.1093/rpd/nch349

MEENAKSHI, C., P. VENKATACHALAM, S. CHANDRASEKARAN, e B. VENKATRAMAN, “Construction of dose response curve for 6 MV LINAC X-rays using Premature Chromosome Condensation assay for radiation dosimetry”, Applied Radiation and Isotopes, vol. 173, p. 109729, jul. 2021, doi: 10.1016/j.apradiso.2021.109729. DOI: https://doi.org/10.1016/j.apradiso.2021.109729

LAMADRID, A., O. GARCÍA, M. DELBOS, P. VOISIN, e L. ROY, “PCC-ring induction in human lymphocytes exposed to gamma and neutron irradiation”, J Radiat Res, vol. 48, no 1, p. 1–6, 2007, doi: 10.1269/jrr.0625. DOI: https://doi.org/10.1269/jrr.0625

PUIG, R., L. BARRIOS, M. PUJOL, M. R. CABALLÍN, e J.-F. BARQUINERO, “Suitability of scoring PCC rings and fragments for dose assessment after high-dose exposures to ionizing radiation”, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol. 757, no 1, p. 1–7, set. 2013, doi: 10.1016/j.mrgentox.2013.03.013. DOI: https://doi.org/10.1016/j.mrgentox.2013.03.013

ROMERO, I. ET AL., “Assessment of simulated high-dose partial-body irradiation by PCC-R assay”, J Radiat Res, vol. 54, no 5, p. 863–871, set. 2013, doi: 10.1093/jrr/rrt032. DOI: https://doi.org/10.1093/jrr/rrt032

ROMERO, I., A. I. LAMADRID, J. E. GONZÁLEZ, T. MANDINA, e O. GARCÍA, “Culture time and reagent minimization in the chemical PCC assay”, Int J Radiat Biol, vol. 92, no 10, p. 558–562, 2016, doi: 10.1080/09553002.2016.1206236. DOI: https://doi.org/10.1080/09553002.2016.1206236

SUN, M., J. MOQUET, S. BARNARD, D. LLOYD, e E. AINSBURY, “A Simplified Calyculin A-Induced Premature Chromosome Condensation (PCC) Protocol for the Biodosimetric Analysis of High-Dose Exposure to Gamma Radiation”, Radiat Res, vol. 193, no 6, p. 560, mar. 2020, doi: 10.1667/RR15538.1. DOI: https://doi.org/10.1667/RR15538.1

BALAKRISHNAN, S., KAPIL SHIRSATH, N. BHAT, e K. ANJARIA, “Biodosimetry for high dose accidental exposures by drug induced premature chromosome condensation (PCC) assay”, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol. 699, no 1–2, p. 11–16, jun. 2010, doi: 10.1016/j.mrgentox.2010.03.008. DOI: https://doi.org/10.1016/j.mrgentox.2010.03.008

LINDHOLM, C. ET AL., “Premature Chromosome Condensation (PCC) Assay for Dose Assessment in Mass Casualty Accidents”, Radiat Res, vol. 173, no 1, p. 71–78, jan. 2010, doi: 10.1667/RR1843.1. DOI: https://doi.org/10.1667/RR1843.1

LAMADRID, A. I., J. E. GONZÁLEZ, O. GARCÍA, P. VOISIN, e L. ROY, “Prematurely Condensed Chromosome Rings after Neutron Irradiation of Human Lymphocytes”, J Radiat Res, vol. 52, no 4, p. 531–535, 2011, doi: 10.1269/jrr.10096. DOI: https://doi.org/10.1269/jrr.10096

PUIG, R., M. PUJOL, L. BARRIOS, M. R. CABALLÍN, e J.-F. BARQUINERO, “Analysis of α-particle-induced chromosomal aberrations by chemically-induced PCC. Elaboration of dose-effect curves”, Int J Radiat Biol, vol. 92, no 9, p. 493–501, set. 2016, doi: 10.1080/09553002.2016.1206238. DOI: https://doi.org/10.1080/09553002.2016.1206238

Downloads

Published

2024-05-24

Issue

Section

Articles

How to Cite

Dose-effect calibration curve for high X-ray doses using the Calyculin-A chromosome premature condensation assay. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 2, p. e2422, 2024. DOI: 10.15392/2319-0612.2024.2422. Disponível em: https://www.bjrs.org.br/revista/index.php/REVISTA/article/view/2422. Acesso em: 2 may. 2025.