Análise computacional do desempenho de atenuação de raios gama e neutrões rápidos de alguns compostos de tório e urânio

Autores

DOI:

https://doi.org/10.15392/2319-0612.2025.2868

Palavras-chave:

Eficácia da blindagem, Absorção de energia, Número atómico efetivo, Secção transversal de remoção efectiva

Resumo

A avaliação da eficácia da proteção contra a radiação de alguns compostos, incluindo Fe, Th, Y, Nb, Ta, Ti e U, foi calculada para a absorção de energia e interação total na gama de energia dos fotões de 0,015 a 15 MeV. O número atómico efetivo (Zeff) destes compostos foi determinado através dos coeficientes de atenuação de massa (µ/ρ, cm2/g) e de absorção de energia de massa (µ/ρ, cm2/g). Por conseguinte, os valores de Zeff foram calculados para a interação total dos fotões (ZIeff) e a absorção de energia (ZAeff) utilizando os códigos Py-MLBUF e Phy-X/PSD. Além disso, a secção transversal de remoção efectiva para neutrões rápidos (ΣR, cm-1) e os comprimentos de atenuação foram calculados para investigar as caraterísticas de atenuação de neutrões rápidos. Os resultados apresentados mostraram que, Zeff de S1 (UO2) e S2 (ThSiO4) são comparativamente mais elevados do que os Zeff dos restantes compostos, enquanto S7 (Fe(UO2)2(PO4)2.8(H2O)) possui os valores mais baixos de Zeff. Os resultados obtidos também mostram que ZAeff deve ser usado em vez de ZIeff quando a quantidade em questão é a dissipação de energia. Além disso, os valores calculados de ΣR para os compostos testados foram encontrados próximos e variaram de 0,079 cm-1 para S4 a 0,146 cm-1 para S1. Além disso, a comparação dos valores calculados para diferentes parâmetros de proteção revelou uma boa concordância entre os métodos propostos. Por último, este estudo poderá ser útil para aplicações destes compostos em requisitos de proteção contra raios gama e neutrões rápidos em diferentes domínios, tais como os ciclos do combustível nuclear e a proteção médica em ambientes de manuseamento de urânio.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Ahmed Osman, Jouf University

    Assistant professor of nuclear physics, Physics Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia

Referências

[1] Kaewkhao, J., et al., Determination of effective atomic numbers and effective electron densities for Cu/Zn alloy, Journal of Quantitative Spectroscopy and Radiative Transfer, v. 109, n. 7, p. 1260-1265, 2008, doi: https://doi.org/10.1016/j.jqsrt.2007.10.007. DOI: https://doi.org/10.1016/j.jqsrt.2007.10.007

[2] Kurudirek, M, et al., Chemical composition, effective atomic number and electron density study of trommel sieve waste (TSW), Portland cement, lime, pointing and their admixtures with TSW in different proportions. Appl. Radiat. Isot., v. 68, n. 6, p. 1006-11, 2010. DOI: https://doi.org/10.1016/j.apradiso.2009.12.039

[3] Kirdsiri, K., et al., Gamma-rays shielding properties of xPbO:(100−x)B2O3 glasses system at 662keV, Annals of Nuclear Energy, v. 36, n. 9, p. 1360-1365, 2009, doi: https://doi.org/10.1016/j.anucene.2009.06.019. DOI: https://doi.org/10.1016/j.anucene.2009.06.019

[4] Singh, K., et al., Gamma-ray attenuation coefficients in bismuth borate glasses. Nucl. Instrum. Methods B, v. 194, p. 1–6, 2002. DOI: https://doi.org/10.1016/S0168-583X(02)00498-6

[5] Singh, S., et al., Barium borate-fly ash glasses: as radiation shielding materials. Nucl. Instrum. Methods B, v. 266, p. 140–146, 2008. DOI: https://doi.org/10.1016/j.nimb.2007.10.018

[6] Ozdemir, Y. and Kurudirek, M., A study of total mass attenuation coefficients, effective atomic numbers and electron densities for various organic and inorganic compounds at 59.54 keV. Ann. Nucl. Energy, v. 36, p. 1769–1773, 2009. DOI: https://doi.org/10.1016/j.anucene.2009.09.008

[7] Kurudirek, M. and Ozdemir, Y., Determination of effective atomic numbers in some compounds for photoelectric process at 59.54 keV by using different methods. J. X-ray Sci. Technol., v. 18, p. 183–191, 2010. DOI: https://doi.org/10.3233/XST-2010-0253

[8] Osman, A. M., Calculation of Gamma and Neutron Shielding Parameters for Reinforced Polymer Composites, ASME. ASME J of Nuclear Rad Sci.; v. 9, n. 1, p. 1-9, 2023, doi: https://doi.org/10.1115/1.4054547. DOI: https://doi.org/10.1115/1.4054547

[9] Murty, V. R. K., Effective atomic numbers for W/Cu alloy for total photon attenuation. Radiat. Phys. Chem., v. 71, p. 667–669, 2004. DOI: https://doi.org/10.1016/j.radphyschem.2004.04.046

[10] El-Kateb, A. H., et al., Determination of atomic cross-sections and effective atomic numbers for some alloys. Ann. Nucl. Energy, v. 27, p. 1333–1343, 2000. DOI: https://doi.org/10.1016/S0306-4549(99)00121-8

[11] A. M. Abdelmonem, et al., Computing the gamma-ray, charged particles and fast neutron-shielding performances of selected alloys, Radiation Effects and Defects in Solids, v. 179, n. 9-10, p. 1105-1131, 2024. DOI: https://doi.org/10.1080/10420150.2024.2332193

[12] Gowda, S., et al., Studies on effective atomic numbers and electron densities in amino acids and sugars in the energy range 30–1333 keV. Nucl. Instrum. Methods B, v. 239, p. 361–369, 2005. DOI: https://doi.org/10.1016/j.nimb.2005.05.048

[13] Manjunathaguru, V. and Umesh, T.K., Effective atomic numbers and electron densities of some biologically important compounds containing H, C, N and O in the energy range 145–1330 keV. J. Phys. B: At. Mol. Opt. Phys., v. 39, p. 3969–3981, 2006. DOI: https://doi.org/10.1088/0953-4075/39/18/025

[14] Osman, A. M., Analysis of radiation shielding effectiveness of hydride and borohydride metals for nuclear industry, International Journal of Advanced Nuclear Reactor Design and Technology, v. 5, n. 1, p. 30-43, 2023. DOI: https://doi.org/10.1016/j.jandt.2023.04.001

[15] Manjunathaguru, V. and Umesh, T. K., Total interaction cross sections and effective atomic numbers of some biologically important compounds containing H, C, N and O in the energy range 6.4–136 keV. J. Phys. B: At. Mol. Opt. Phys., v. 40, p. 3707–3718, 2007. DOI: https://doi.org/10.1088/0953-4075/40/18/010

[16] Manohara, S.R., et al., Studies on effective atomic number, electron density and kerma for some fatty acids and carbohydrates. Phys. Med. Biol., v. 53, p. 377–386, 2008a. DOI: https://doi.org/10.1088/0031-9155/53/20/N01

[17] Manohara, S. R., et al., Photon interaction and energy absorption in glass: a transparent gamma ray shield. J. Nucl. Mater., v. 393, p. 465–472, 2009. DOI: https://doi.org/10.1016/j.jnucmat.2009.07.001

[18] Manohara, S.R., et al., The effective atomic number revisited in the light of modern photon-interaction cross section databases. Appl. Radiat. Isot., v. 68, p. 784–787, 2010. DOI: https://doi.org/10.1016/j.apradiso.2009.09.047

[19] Kurudirek, M., et al., Effective atomic number study of various alloys for total photon interaction in the energy region of 1 keV to 100 GeV. Nucl. Instrum. Methods A, v. 613, p. 251–256, 2010b. DOI: https://doi.org/10.1016/j.nima.2009.11.061

[20] El-Khayatt, A.M. and El-Sayed Abdo, A., MERCSF-N calculation program for fast neutron qremoval cross-sections in composite shields. Ann. Nucl. Energy, v. 36, p. 832–836, 2009. DOI: https://doi.org/10.1016/j.anucene.2009.01.013

[21] El-Khayatt, A.M., Radiation shielding of concretes containing different lime/ silica ratios. Ann. Nucl. Energy, v. 37, p. 7991–995, 2010a. DOI: https://doi.org/10.1016/j.anucene.2010.03.001

[22] El-Khayatt, A.M., Calculation of fast neutron removal cross-sections for some compounds and materials. Ann. Nucl. Energy, v. 37, n. 2, p. 218–222, 2010b. DOI: https://doi.org/10.1016/j.anucene.2009.10.022

[23] Kulwinder Singh Mann and Sukhmanjit Singh Mann, Py-MLBUF: Development of an online-platform for gamma-ray shielding calculations and investigations, Annals of Nuclear Energy, v. 150, p. 1 – 22, 2021. DOI: https://doi.org/10.1016/j.anucene.2020.107845

[24] Erdem Sakar, et al., Phy-X/PSD: development of user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Rad. Phys. Chem., v. 166, p. 1-12, 2020, doi: https://doi.org/10.1016/j.radphyschem.2019.108496 DOI: https://doi.org/10.1016/j.radphyschem.2019.108496

[25] Hubbell, J.H., Seltzer, S.M., Tables of X-ray Mass Attenuation Coefficients and Mass Energy Absorption Coefficients from 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest. Report NISTIR 5632, National Institute of Standards and Technology, Gaithersburg, MD 20899, 1995. DOI: https://doi.org/10.6028/NIST.IR.5632

[26] Manjunatha, H. C., A study of gamma attenuation parameters in poly methyl methacrylate and Kapton. Radiat. Phys. Chem., v. 137, p. 254 – 259, 2017. DOI: https://doi.org/10.1016/j.radphyschem.2016.01.024

[27] Devillers, M. A. C., Lifetime of electrons in metals at room-temperature. Solid State Commun., v. 49, p. 1019 – 1022, 1984. DOI: https://doi.org/10.1016/0038-1098(84)90413-7

[28] Aboudeif, Y., et al., An evaluation of the radiation protection characteristics of prototyped oxide glasses utilizing PhyX/PSD software, J. Instrum. v. 15, n. 8, p. P08005, 2020. DOI: https://doi.org/10.1088/1748-0221/15/08/P08005

[29] Shultis J. K., Faw, R. E., Fundamentals of Nuclear Science and Engineering, 2nd ed. CRC Press, Boca Raton, 2008. DOI: https://doi.org/10.1201/b12824

[30] Martin, J. E., Physics for radiation protection (2nd ed.). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2006.

Publicado

05-12-2025