Análise computacional da deposição de parafina em oleodutos de águas profundas utilizando técnicas nucleares

Autores

DOI:

https://doi.org/10.15392/2319-0612.2024.2760

Palavras-chave:

wax deposition, nuclear technique, gamma radiation, Monte Carlo method

Resumo

A deposição de parafina em dutos de petróleo é um problema que afeta a garantia de escoamento porque restringe a produção e em caso mais extremos, causa obstrução dos oleodutos. Esse problema ocorre com maior frequência em ambientes offshore, onde se encontram a maior parte dos reservatórios brasileiros em que a temperatura do oceano, em elevadas profundidades, é cerca de 5°C. Detectar a camada de parafina nas paredes internas dos oleodutos em seu estágio inicial evita paradas não programadas e grandes perdas econômicas. Dentre os vários métodos e técnicas encontrados na literatura para o monitoramento da deposição de parafina, as técnicas nucleares se diferenciam pelo fato de seu uso não interferir na integridade física do duto, pelo modo de operação não intrusivo e indireto (sem contato) e, portanto, não afeta o processo de transporte do petróleo. Este trabalho apresenta um modelo computacional utilizando o código Monte Carlo N-Particle 6 (MCNP6) e a técnica da perfilagem por transmissão da radiação gama para detectar a presença de parafina nas paredes internas de oleodutos utilizados no transporte de petróleo em águas profundas. Os resultados deste estudo mostram que o modelo é capaz de detectar a presença de até 5% de parafina (em relação ao raio interno do oleoduto) com uma exatidão de 7,4% em oleodutos utilizados em águas profundas.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

[1] MATOS, S. F.; ALTOÉ, L. Analysis of deepwater oil flow assurance in relation to wax deposition. Latin American Journal of Energy Research, vol. 6, no 2, p. 12–31, 2020, doi: 10.21712/lajer.2019.v6.n2.p12-31. DOI: https://doi.org/10.21712/lajer.2019.v6.n2.p12-31

[2] PORTO, T. R. N.; LIMA, A. G. B. De. Transient flow of waxy oil in a circular section pipeline: modeling and simulation, Holos, vol. 1, p. 155–173, 2017, doi: 10.15628/holos.2017.5220. DOI: https://doi.org/10.15628/holos.2017.5220

[3] AL-YAARI, M. wax deposition: mitigation and removal techniques. Society of Petroleum Engineers, p. 14–16, 2011. DOI: https://doi.org/10.2118/155412-MS

[4] THEYAB, M. A. Wax deposition process: mechanisms, affecting factors and mitigation methods. Open Access Journal of Science, vol. 2, no 2, mar. 2018, doi: 10.15406/oajs.2018.02.00054. DOI: https://doi.org/10.15406/oajs.2018.02.00054

[5] MATZAIN, A.; APTE, M. S.; ZHANG, H. Q.; VOLK, M.; BRILL, J. P.; CREEK, J. L. Investigation of paraffin deposition during multiphase flow in pipelines and wellbores - Part 1: Experiments. Journal of Energy Resources Technology, Transactions of the ASME, vol. 124, no 3, p. 180–186, set. 2002, doi: 10.1115/1.1484392. DOI: https://doi.org/10.1115/1.1484392

[6] BORDALO, S. N.; OLIVEIRA, R. Biphasic oil-water flow with wax precipitation in subsea oil production pipelines, 4° Congresso Brasileiro de Petróleo e Gás - PDPETRO, Campinas, São Paulo: Associação Brasileira de Pesquisa e Desenvolvimento em Petróleo e Gás - ABPG , out. 2007, p. 12.

[7] CHEN, X. T.; BUTLER, M.; VOLK, M. Techniques for measuring wax thickness during single and multiphase flow, SPE Annual Technical Conference and Exhibition, San Antonio, Texas: Society of Petroleum Engineers, out. 1997, p. 1–8. DOI: https://doi.org/10.2118/38773-MS

[8] VIANA, C. PIG Passage - Critical Operation: Concepts, Operations and Recommendations, LinkedIn. Accessed: May 30, 2023. [Online]. Available at: https://www.linkedin.com/pulse/passagem-de-pig-operação-crítica-conceitos-operações-viana/?originalSubdomain=pt

[9] MORAIS, J. M. Deepwater Oil: A Technological History of PETROBRAS in Offshore Exploration and Production. Brasília: PETROBRAS, 2013.

[10] MAJID, S. A.; MELAIBARI, A; MALKI, B. Hydrocarbon scale deposits measurements by neutron moderation and capture gamma methods, Nuclear Instruments and Methods in Physics Research B, vol. 119, p. 433–437, 1996. DOI: https://doi.org/10.1016/0168-583X(96)00296-0

[11] HOFFMANN, R.; AMUNDSEN, L.; SCHÜLLER, R. Online monitoring of wax deposition in sub-sea pipelines, Meas Sci Technol, vol. 22, no 7, 2011, doi: 10.1088/0957-0233/22/7/075701. DOI: https://doi.org/10.1088/0957-0233/22/7/075701

[12] CHEN et al., H. Ultrasonic detection and analysis of wax appearance temperature of kingfisher live oil, Energy and Fuels, vol. 28, no 4, p. 2422–2428, abr. 2014, doi: 10.1021/ef500036u. DOI: https://doi.org/10.1021/ef500036u

[13] MEI, I. L. S.; ISMAIL, I.; SHAFQUET, A.; ABDULLAH, B. Real-time monitoring and measurement of wax deposition in pipelines via non-invasive electrical capacitance tomography, Meas Sci Technol, vol. 27, no 2, dez. 2015, doi: 10.1088/0957-0233/27/2/025403. DOI: https://doi.org/10.1088/0957-0233/27/2/025403

[14] SOARES, L. L. O. Determination of the onset of paraffin deposition in oil production and transportation pipelines using a Multipoint Temperature Sensor. Federal University of Bahia, Polytechnic School, Salvador, 2017.

[15] OLIVEIRA, A. A. Historical success stories in the use of MAD-pig to locate obstructions in pipelines, Technical Bulletin of Oil Production, vol. 1, no 1, Rio de Janeiro, p. 95–126, 2006.

[16] KOPTEVA, A.; KOPTEV, V.; MALAREV, V.; USHKOVA, T. Development of a system for automated control of oil transportation in the Arctic region to prevent the formation of wax deposits in pipelines, Proceedings of EECE 2019: Energy, Environmental and Construction Engineering, St. Petersburg, Russia: EDP Sciences, nov. 2019. doi: 10.1051/e3sconf/201914007004. DOI: https://doi.org/10.1051/e3sconf/201914007004

[17] LOPES, R. T.; VALENTE, C. M.; DE JESUS, E. F. O.; CAMERINI, C. S. Detection of paraffin deposition inside a draining tubulation by the Compton Scattering Technique, Applied Radiation and Isotopes, vol. 48, no 10–12, p. 1443–1450, 1997, doi: 10.1016/S0969-8043(97)00255-8. DOI: https://doi.org/10.1016/S0969-8043(97)00255-8

[18] KOPTEVA, A.; STARSHAYA, V. Radioisotope measuring system for oil stream asphaltene-resin-paraffin deposits ARPD parameters. SPE Russian Petroleum Technology Conference and Exhibition, Moscow, Russia: Society of Petroleum Engineers, out. 2016, p. 1–7. DOI: https://doi.org/10.2118/182104-RU

[19] ABDUL-MAJID, S. Determination of wax deposition and corrosion in pipelines by neutron back diffusion collimation and neutron capture gamma rays, Applied Radiation and Isotopes, vol. 74, p. 102–108, abr. 2013, doi: 10.1016/j.apradiso.2013.01.012. DOI: https://doi.org/10.1016/j.apradiso.2013.01.012

[20] TAUHATA, L.; SALATI, I.; PRINZIO, R. D.; PRINZIO, A. R. D. Radioprotection and Dosimetry: Fundamentals, 10o ed. Rio de Janeiro: Comissão Nacional de Energia Nuclear, 2014.

[21] JOHANSEN, G. A.; JACKSON, P. Radioisotope Gauges for Industrial Process Measurements. Southern Gate, Chichester: John Wiley & Sons, 2004. DOI: https://doi.org/10.1002/0470021098

[22] KNOLL, G. F. Radiation Detection and Measurement, 4o ed. Ann Arbor, Michigan: John Wiley & Sons, 2010.

[23] LEITE, N. M.; LIRA, C. A. B. O.; RODRIGUEZ, A. G. Computational analysis for wax detection in deepwater pipelines using nuclear techniques. Brazilian Journal of Radiation Sciences, vol. 11, no 1A (Suppl.), p. 1–20, jul. 2023, doi: 10.15392/2319-0612.2023.2193. DOI: https://doi.org/10.15392/2319-0612.2023.2193

[24] BESERRA, M. T. F. Assessment of scale thickness in oil extraction pipelines. Institute of Radiation Protection and Dosimetry, Rio de Janeiro, 2012.

[25] SOARES, M. Fouling Detection System in Oil Pipelines Using Gamma Transmission Technique. Federal University of Rio de Janeiro, Rio de Janeiro, 2014.

[26] YORIYAZ, H. Monte Carlo Method: principles and applications in Medical Physics. Brazilian Journal of Medical Physics, vol. 3, no 1, p. 141–149, 2009.

[27] GOORLEY, J. T.; JAMES, M. R.; BOOTH, T. E.; BROWN, F. B.; BULL, J. S.; COX, L. J.; DURKEE, J. W. J.; ELSON, J. S.; FENSIN, MICHAEL LORNE FORSTER, ROBERT A. III HENDRICKS, J. S.; HUGHES, H. G. I.; JOHNS, R. C.; KI, A. J. Initial MCNP6 release overview -MCNP6 version 1.0. Los Alamos: Los Alamos National Laboratory, 2013. DOI: https://doi.org/10.2172/1086758

[28] LOS ALAMOS NATIONAL LABORATORY. Monte Carlo N–Particle Transport Code System Including MCNP6.1, MCNP5-1.60, MCNPX-2.7.0 and Data Libraries. Los Alamos, New Mexico: Radiation Safety Information Computational Center, 2013.

[29] JOHANSEN, G. A.; JACKSON, P. Salinity independent measurement of gas volume fraction in oil/gas/water pipe flows, Applied Radiation and Isotopes, vol. 53, p. 595–601, 2000, [Online]. Disponível em: www.elsevier.com/locate/apradiso DOI: https://doi.org/10.1016/S0969-8043(00)00232-3

[30] SALGADO, C. M. Identification of Flow Regimes and Prediction of Volume Fractions in Multiphase Systems Using Nuclear Technique and Artificial Neural Network. Federal University of Rio de Janeiro, Rio de Janeiro, 2010.

[31] YEH, M. K.; KYRIAKIDES, V. Collapse of Deepwater Pipelines. 18th Offshore Technology Conference, Houston, Texas: American Society of Mechanical Engineers, maio 1986. DOI: https://doi.org/10.4043/5215-MS

[32] GOUVEIA, J. C. C. Critical engineering analysis for rigid pipes submitted to large deformations. Rio de Janeiro: Fluminense Federal University, 2010.

[33] TUBOS ABC, API 5L tubes grades X42 to X80. ABC Tubes. Acessado: 20 de maio de 2022. [Online]. Disponível em: https://www.tubosabc.com.br/tubos/tubos-api-5l/?doing_wp_cron=1684622473.7044830322265625000000

[34] TYCOON PIPING SOLUTION. API 5L X65 PSL2 Pipe. Acessado: 13 de julho de 2023. [Online]. Disponível em: https://www.oilandgaspipingmaterials.com/iso-3183-l450-api5l-x65-psl1-psl2-pipe-suppliers.html

[35] MCCONN, R.; GESH, C.; PAGH, R.; RUCKER; WILLIAMS, R. Compendium of material composition data for radiation transport modeling. Washington: Pacific Northwest National Laboratory, 2011. DOI: https://doi.org/10.2172/1023125

[36] NATIONAL AGENCY OF PETROLEUM, NATURAL GAS AND BIOFUELS, Oil and Natural Gas Production Bulletin No. 152. Acessado: 25 de junho de 2023. [Online]. Disponível em: https://www.gov.br/anp/pt-br/centrais-de-conteudo/publicacoes/boletins-anp/boletins/arquivos-bmppgn/2023/boletim-abril.pdf

[37] NATIONAL AGENCY OF PETROLEUM, NATURAL GAS AND BIOFUELS, Oil and Natural Gas Production Bulletin No. 121. Acessado: 1o de fevereiro de 2023. [Online]. Disponível em: https://www.gov.br/anp/pt-br/centrais-de-conteudo/publicacoes/boletins-anp/boletins/arquivos-bmppgn/2020/boletim-12-2020.pdf

[38] MALAREV, V. I.; KOPTEVA, A. V. Using radioisotope method for measuring ice layer thickness in pulp lines. IOP Conf Ser Earth Environ Sci, vol. 87, no 3, 2017, doi: 10.1088/1755-1315/87/3/032022. DOI: https://doi.org/10.1088/1755-1315/87/3/032022

[39] DOBBS, J. B. A unique method of wax control in production operations. SPE Rocky Mountain Regional Meeting, Gillette, Wyoming: Society of Petroleum Engineers Inc, maio 1999, p. 1–6. DOI: https://doi.org/10.2118/55647-MS

[40] FERREIRA, C. A. M. Detection of annular flooding in flexible ducts using the gamma radiation transmission technique. Federal University of Rio de Janeiro, Rio de Janeiro, 2021.

[41] GUEDES, K. A. N. Simulation using the MCNPX code for gamma tomography and validation with experimental data. Federal University of Pernambuco, Recife, 2016.

[42] MCCAW, D. D.; HULBERT, V. G.; SMITH, A. E. Gamma scanning of large sieve tray towers”. NUCLEX 75: International Nuclear Industries Fair and Technical Meeetings, Basel, Switzerland: Atomic Energy of Canada Limited, out. 1975, p. 1–13.

[43] CARNEIRO JUNIOR, C. Development of a Gamma Transmission-Based Inspection System for Application in Flexible Pipes and Industrial Columns. Federal University of Rio de Janeiro, Rio de Janeiro, 2005.

[44] TEIXEIRA, T. P. Prediction of scale thickness in pipelines used in oil transportation using gamma radiation and artificial neural network. Institute of Nuclear Engineering, Rio de Janeiro, 2018.

[45] OLIVEIRA, D. F.; NASCIMENTO, J. R.; MARINHO, C. A.; LOPES, R. T. Gamma transmission system for detection of scale in oil exploration pipelines. Nuclear Instruments and Methods in Physics Research A, vol. 784, p. 616–620, jun. 2015, doi: 10.1016/j.nima.2014.11.030. DOI: https://doi.org/10.1016/j.nima.2014.11.030

Downloads

Publicado

05-02-2025