Determination of chemical elements in magnesium-based materials by neutron activation analysis
DOI:
https://doi.org/10.15392/bjrs.v9i1A.1584Palavras-chave:
biomaterials, magnesium alloys, neutron activation analysis, chemical elements, impurities.Resumo
Over the last decades there was an increasing interest in using magnesium alloys for medical applications due to their biodegradability in the human body, providing a temporary mechanical support and corroding completely after the tissue healing. Although magnesium is a non-toxic element, it is of great importance to evaluate the element concentration, as well as the impurities present in both, pure magnesium and magnesium alloys, as the AZ31. The purpose of this study was to analyze the element composition of these materials using the method of neutron activation analysis (NAA). Standard Reference Materials (SRMs) acquired from National Institute of Standards and Technology (NIST) were analyzed for analytical quality control. Short and long term irradiations were carried out at the IEA-R1 nuclear research reactor and gamma-ray activities induced to the samples and element standard were measured using HPGe detector coupled to a Digital Spectrum Analyzer. The radioisotopes were identified by gamma ray energies and half-life. Concentrations of the elements As, Cr, Cd, Co, Fe, In, La, Mg, Mn, Mo, Na, Sb, V, W and Zn were determined in pure magnesium sample and the Al, As, La, Mg, Mn, Na, Sb and Zn in the AZ31 alloy, calculated by comparative method. The SRMs were analyzed by applying the same experimental conditions used for magnesium-based materials and their results presented good accuracy and precision. Thus, from the measurements obtained in this study it can be concluded that NAA is a suitable method for element determinations in magnesium-based materials providing reliable results.Downloads
Referências
RATNER, B. D.; HOFFMAN, A. S.; SCHOEN, F. J; LEMONS, J. E. Biomaterials science - An introduction to materials in medicine. Elsevier, Oxford, United Kingdom (2013) in : PIRES, A.L.R.; BIERHALZ, A.C.K.; MORAES, A.M. Biomateriais: tipos, aplicações e mercado. Quím. Nova, v. 38, p. 957-971, 2015.
SEZER, N.; EVIS, Z.; KAYHAN, S. M.; TAHMASEBIFAR, A.; KOC, M. Review of magnesium-based biomaterials and their applications. J Magnes Alloy, v. 6, p. 23-43, 2018.
SAW, B. A. Corrosion resistance of magnesium alloy. ASM Handbook, 13a. Russell Township, United States, ASM International, 2003.
GU, X. N.; LO, S.S.; LI, X.M.; FAN, Y.B. Magnesium based degradable biomaterials: a review. Front Mater Sci, v. 8, p. 200-218, 2014.
JUNG, O.; SMEETS, R.; PORCHETTA, D.; KOPP, A.; PTOCK, C.; MÜLLER, U.; HEILAND, M.; SCHWADE, M.; BEHR, B.; KROEGER, N.; KLUWE, L.; HANKEN, H.; HARTJEN, P. Optimized in vitro procedure for assessing the cytocompatibility of magnesium-based biomaterials. Acta
Biomater, 2015.
DING, W. Opportunities and challenges for the biodegradable magnesium alloys as next-generation biomaterials. Regen Biomater, v. 3, p. 79-86, 2016.
TAN, L.; WANG, Q.; LIN, X.; WAN, P.; ZHANG, G.; ZHANG, Q.; YANG, K. Loss of mechanical properties in vivo and bone-implant interface strength of AZ31B magnesium alloy screws with Si-containing coating. Acta Biomater, v. 10, p. 2333-2340, 2014.
LI, X.; LIU, X.; WU, S.; YEUNG, K. W .K.; ZHENG, Y.; CHU, P. K. Design of magnesium alloys with controllable degradation for biomedical implants: from bulk to surface. Acta Biomater, v. 45, p.2-30, 2016.
PARDO, A.; MERINO, M. C.; COY, A. E.; ARRABAL, R.; VIEJO, F.; MATYKINA, E. Corrosion behavior of magnesium/aluminum alloys in 3.5% wt. NaCl. Corros Sci, v. 50, p. 823-834, 2007.
CINCU, E.; MANEA, I.; MANU, V.; BARBOS, D.; SIMA, O.; GUSTAVSSON, I.; VERMAERCKE, P.; VAJDA, N.; MOLNAR, Zs.; POLKOWSKA-MOTRENKO, H. Comparative performance of INAA and other spectroscopy techniques in the elemental analysis of stainless steel materials. J Radioanal Nucl Chem, v. 274, p. 199-205, 2007.
MANEA, I.; CINCU, E.; CRACIUN, L.; CAZAN, I.L.; MANU, V.; BARBOS, D.; COCIS A. Application of the INAA technique for elemental analysis of metallic biomaterials used in dentistry. Appl Radiat Isot, v. 67, p. 2133-2136, 2009.
SHINDE, A. D.; ACHARYA, R.; REDDY, A.V.R. Analysis of zirconium and nickel based alloys and zirconium oxides by relative and internal monostandard neutron activation analysis Methods. Nucl Eng Technol, v. 49, p. 562-568, 2017.
HAMIDATOU L. A. Overview of neutron activation analysis. IntechOpen (2019). Available at:. Last acessed:18June 2020.
EHMANN W. D. Radiochemistry and nuclear methods of analysis. Chichester, United Kingdom, John Wiley & Sons, Inc., 1999.
NIST. National Institute of Standards and Technology. Certificate of analysis. Standard reference material 363 chromium vanadium modified, p. 1-3, 2012.
NIST. National Institute of Standards and Technology Certificate of analysis. Standard reference material 1400 bone ash, p. 1-3, 1992.
NIST. National Institute of Standards and Technology. Certificate of analysis. Standard reference material 58a ferrosilicon, p. 1-4, 2009.
IAEA – International Atomic Energy Agency. Practical aspects of operating a neutron activation analysis laboratory, IAEA, TEC DOC 564. Vienne, 1990.
DE SOETE, D.; GIJBELS R.; Hoste J. Neutron activation analysis, London, United Kingdom, Wiley-Interscience, 1972.
KONIECZKA P.; NAMIESNIK J. Quality Assurance and Quality Control in the Analytical Chemical Laboratory: a practical approach, CRC Press, Florida, USA, 2009.
NAMAS. National Measurements Accreditation Service. NIS 3003. United Kingdom, 8ª Edition, 1995.
CURRIE, L. A. International recommendations offered on analytical detection and quantification concepts and nomenclature. Anal Chim Acta, v. 391, p. 127-134, 1999.
Alfa Aesar by Thermo Fisher Scientific. 44009 Magnesium Aluminum Zinc foil, https://www.alfa.com/pt/catalog/044009/>, (2018).
COSTA, M. Review of arsenic toxicity, speciation and polyadenylation of canonical histones. Toxicol Appl Pharm, v. 375, p 1-4, 2019.
HANSELL, C. All manner of antimony. Nat Chem, v. 7, p.8, 2015.
Downloads
Publicado
Edição
Seção
Licença
Direitos autorais (c) 2021 Brazilian Journal of Radiation Sciences

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista Brazilian Journal of Radiation Sciences, editada pela Sociedade Brasileira de Proteção Radiológica, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo à Sociedade Brasileira de Proteção Radiológica, que está autorizada a publicá-lo em meio impresso, digital, ou outro existente, sem retribuição financeira para os autores.
Licença
Os artigos do BJRS são licenciados sob uma Creative Commons Atribuição 4.0 Licença Internacional, que permite o uso, compartilhamento, adaptação, distribuição e reprodução em qualquer meio ou formato, desde que você dê o devido crédito ao (s) autor (es) original (is) e à fonte, forneça um link para a licença Creative Commons, e indique se mudanças foram feitas. As imagens ou outro material de terceiros neste artigo estão incluídos na licença Creative Commons do artigo, a menos que indicado de outra forma em uma linha de crédito para o material. Se o material não estiver incluído no licença Creative Commons do artigo e seu uso pretendido não é permitido por regulamentação legal ou excede o uso permitido, você precisará obter permissão diretamente do detentor dos direitos autorais. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/