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ABSTRACT 

 
Neural networks, particularly deep neural networks, are used nowadays with great success in several tasks, such 

as image classification, image segmentation, translation, text to speech, speech to text, achieving super-human 

performance. In this study, the capabilities of deep learning are explored on a new field: gamma-spectroscopy 

analysis, comparing the classification performance of different deep neural network architectures. The following 

architectures where tested: VGG-16, VGG-19, Xception, ResNet, InceptionV3, and MobileNet, which are availa-

ble through the Keras Deep Learning framework to identify several different radionuclides (Am-241, Ba133, Cd-

109, Co-60, Cs-137, Eu-152, Mn-54, Na-24, and Pb-210). Using an HPGe detector to acquire several gamma spec-

tra from different sealed sources to create a dataset used for the training and validation of the neural network's 

comparison. This study demonstrates the strengths and weaknesses of applying deep learning on gamma-

spectroscopy analysis for nuclear waste characterization. 
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1. INTRODUCTION 

 

Neural networks are one artificial intelligence technique that mimics the biological brain [1]⁠, 

Figure 1 [2]⁠, through software, Figure 2, although the method was described long before, their use 

only gained traction by the last decade due to hardware and software improvements. 

 

Figure 1:  The biological neuron. 

Source:  adapted after [2]  

 

 

 

Figure 2:  One artificial neuron from a perception neural network. 

Source: adapted after [8] 

 

 Nowadays deep neural networks are applied in several new tasks, giving the computer power 

provided by modern devices, combined with the abundant availability of data, new architectures for 

new models are being created, achieving performance levels that surpasses humans in several tasks 

[3 ,4, 5]⁠. 

These successes are the drivers for this study that evaluates the performance of well-known 

deep neural networks architectures in a new task: gamma-spectroscopy analysis for nuclear waste 

characterization. 

activation 
function 
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Previous works evaluate the use of neural networks on such task, although such studies applied 

the perceptron neural network architecture [6, 7]⁠. The use of perception [8]⁠ neural network 

architecture has some drawbacks such as small network size with only three layers (Input, Hidden, 

and Output); train data set must fit into the main computer memory; there is only one activation 

function. 

Deep neural networks [9]⁠, in contrast, allows the use of training sets larger than the main 

memory; an arbitrary number of layers and several different activation functions. Especially the 

ability to train deeper networks allowed new levels of performance, as shown in Figure 3. 

 

Figure 3: The impact of larger networks on classification performance. 

Source: adapted after [12] 

 

At the IPEN Radioactive Waste Management Department, final product from the waste 

treatment must be characterized. Nowadays, this work is manual. This study presents the results of 

different deep neural network architectures on gamma-spectroscopy classification, which is: given a 

gamma spectrum the deep neural network must identify which radionuclide composes the spectra 

(which can be more than one). Aiming future automation of this waste characterization process step. 

2. MATERIALS AND METHODS 

 

Measurements were taken from different sealed sources, Figure 4, to create the base dataset. 

From this base dataset several new spectra where generated containing random radionuclide 

combinations, up to three radionuclides, resulting in a synthetic dataset. 

The synthetic dataset was split into training and testing sets. Measurement from a triple-sealed 

source, containing Am-241, Cs-137, and Co-60 was added to the testing set. All architectures where 

trained using the training set and the performance was evaluated using the testing set. 
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Figure 4: The sealed sources used on this study. 

 

The eleven sealed sources: Am-241, Pb-210, Cs-137, Eu-152, Ba-133, Na-22, Co-60, Co-57, 

Mn-54, Cd-109, Triple calibration source with Am-241, Cs-137 and Co-60. 

The geometry of the measurements is reported at Figure 5. The sealed source is 5 cm far from 

the HPGe detector that is inside the collimator. 

 

Figure 5: Measurements geometry. 

 

The experiment loop is composed by these steps: model creation, one model per network 

architecture; adjust the output layer to a multi class output; train; and validate the trained model. 

The code used in this experiment was developed using Ubuntu 18.04 (kernel version 4.15) as 

operational system, python (version 3.6.6) as a programming language, and the deep neural network 

models were built using Keras (version 2.2.4), a deep learning framework created on top of 

Tensorflow (version 1.13.1), deep learning accelerating library for high-performance computing. 

The training and inference were performed on an Intel I7 personal computer equipped with one 

Nvidia GTX 1060 GPU, using Ubuntu 16.04 as the operating system and Nvidia CUDA (version 

9.2.148) and cuDNN (version 7.1.4) libraries for deep learning computations acceleration. 

During the training phase, all experiments used Stochastic Gradient Descendant as the 

optimizer, binary cross entropy as loss function, learning rate of 0.001 and 250 epochs of training, 

and 0.5 (from 0.0 to 1.0) as the class threshold for accuracy score. 
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3. RESULTS AND DISCUSSION 
 

Table 1 summarizes the results after training all models using the same training and testing set. 

Table 1: Results for each network architecture 

Network architecture Training 

time 

(seconds) 

Number 

of layers 

Number of 

neurons 

Validation 

loss 

Validation 

accuracy 

Xception [10]: use of residual 

connections with depth-wise 

convolutions layers instead of 

standard convolution layers 

1750 36 21,822,698 0.50 18.12% 

VGG-19 [11]: use of several 

consecutive convolution layers 

grouped 4 by 4 

2250 19 70,404,042 0.22 80.62% 

VGG-16 [11]⁠: use of several 

consecutive convolution layers  

grouped 3 by 3 

2000 16 65,094,346 0.21 80.62% 

ResNet50 [12]: use of several 

consecutive convolution layers 

with some of the convolution 

blocks with residual connections 

(shortcuts) between the input and 

output of the block 

1500 50 23,601,930 0.55 18.75% 

MobileNet [13]: use of depth-wise 

convolution layers instead of 

standard convolution layers 

500 25 3,238,538 0.39 21.87% 

InceptionV3 [14]: use of several 

blocks consisted by the 

concatenation of different 

convolution layers with different 

filter sizes 

1250 48 21,822,698 0.28 22.50% 

 

As the performance results of VGG-16 and VGG-19 seems to be equal, the 

top_k_categorical_accuracy was the tiebreaker metric. This metric is measured on the accuracy of 

the correct prediction being in the top-k predictions, as the data mixes up to three radionuclides in 

each spectrum the k parameter, in this case, is equal to three. The results are reported in Table 2. 

 

Table 2: VGG-16 validation results 

Network architecture top_k_categorical_accuracy (k=3) 

VGG-19 95.62% 

VGG-16 95.00% 
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The tiebreaker metric indicates the VGG-19 architecture as the architecture which the best 

performance for the classification task. 

4. CONCLUSION 

 

The experiments demonstrated the feasibility of deep neural networks for gamma-spectroscopy 

analysis, correctly identifying several radionuclides. This approach is innovative due to the use of 

the raw spectra data without any pre/post-processing.  
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