Microtomografia por luz síncrotron para explorar a anatomia de insetos

Autores

  • Gabriela Sena Souza Laboratory of Applied Physics to Biomedical Sciences, Physics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil https://orcid.org/0000-0003-1369-7460 (não autenticado)
    • Thaina Alvarenga Laboratory of Applied Physics to Biomedical Sciences, Physics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
      • Tayane Tanure Laboratory of Applied Physics to Biomedical Sciences, Physics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
        • Samara Oliveira Laboratory of Applied Physics to Biomedical Sciences, Physics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
          • Katrine Paiva Laboratory of Applied Physics to Biomedical Sciences, Physics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
            • Gustavo Colaço Laboratory of Applied Physics to Biomedical Sciences, Physics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
              • Arissa Pickler Laboratory of Applied Physics to Biomedical Sciences, Physics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
                • Gabriel Fidalgo Laboratory of Applied Physics to Biomedical Sciences, Physics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
                  • Liebert Nogueira Oral Research Laboratory (ORL), Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
                    • Marcos Colaço Laboratory of Applied Physics to Biomedical Sciences, Physics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
                      • Ademir Xavier da Silva COPPE/Federal University of Rio de Janeiro, Brazil
                        • Cícero B. Mello Federal Fluminense University, Niterói, Brazil
                          • Ruan Ingliton Federal Fluminense University, Niterói, Brazil
                            • Marcelo Gonzalez Federal Fluminense University, Niterói, Brazil
                              • Patricia Azambuja Federal Fluminense University, Niterói, Brazil
                                • Regina Barroso Laboratory of Applied Physics to Biomedical Sciences, Physics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil

                                  DOI:

                                  https://doi.org/10.15392/2319-0612.2024.2519

                                  Palavras-chave:

                                  Microtomografia, Radiação síncrotron, Aedes aegypti, Drosophila melanogaster

                                  Resumo

                                  Avanços recentes em fontes de luz síncrotron de alta intensidade revolucionaram a área de imagens não destrutivas, especialmente nas ciências biológicas. A microtomografia por luz síncrotron (SR-microCT) emergiu como uma ferramenta poderosa para visualizar estruturas 3D complexas, desde materiais densos até delicados espécimes biológicos. Esta técnica permite uma resolução espacial sem precedentes, facilitando a análise detalhada de estruturas em organismos sem procedimentos invasivos. Além disso, a imagem por contraste de fase de raios X (PCI) tem melhorado a visibilidade de tecidos moles ao explorar deslocamentos de fase, complementando métodos tradicionais baseados em absorção. Este trabalho destaca as capacidades do SR-PCI na pesquisa biológica, demonstrando sua aplicação em amostras de milímetros de mosquitos Aedes aegypti e moscas Drosophila melanogaster em instalações de síncrotron de destaque.

                                  Downloads

                                  Os dados de download ainda não estão disponíveis.

                                  Referências

                                  [1] ABRAMI, A. et al. Medical applications of synchrotron radiation at the SYRMEP beamline at ELETTRA. Nuclear Instruments and Methods in Physics Research Section A, v. 548, p. 221–227, 2005. DOI: 10.1016/j.nima.2005.05.029. DOI: https://doi.org/10.1016/j.nima.2005.03.093

                                  [2] ALBERS, J. et al. Elastic transformation of histological slices allows precise co-registration with microCT data sets for a refined virtual histology approach. Scientific Reports, v. 11, p. 10846, 2021. DOI: 10.1038/s41598-021-90245-5. DOI: https://doi.org/10.1038/s41598-021-89841-w

                                  [3] ARCHILHA, N. et al. MOGNO, the nano and microtomography beamline at Sirius, the Brazilian synchrotron light source. Journal of Physics: Conference Series, v. 2380, n. 1, p. 012123, 2022. DOI: 10.1088/1742-6596/2380/1/012123. DOI: https://doi.org/10.1088/1742-6596/2380/1/012123

                                  [4] BRADY, O. J.; HAY, S. I. The global expansion of dengue: how Aedes aegypti mosquitoes enabled the first pandemic arbovirus. Annual Review of Entomology, v. 65, p. 191–208, 2020. DOI: 10.1146/annurev-ento-011019-024918. DOI: https://doi.org/10.1146/annurev-ento-011019-024918

                                  [5] GIGLIO, A. et al. Exploring compound eyes in adults of four coleopteran species using synchrotron X-ray phase-contrast microtomography (SR-PhC Micro-CT). Life, v. 12, n. 5, p. 741, 2022. DOI: 10.3390/life12050741. DOI: https://doi.org/10.3390/life12050741

                                  [6] KILLINY, N.; BRODERSEN, C. R. Using X-ray micro-computed tomography to three-dimensionally visualize the foregut of the glassy-winged Sharpshooter (Homalodisca vitripennis). Insects, v. 13, n. 8, p. 710, 2022. DOI: 10.3390/insects13080710. DOI: https://doi.org/10.3390/insects13080710

                                  [7] LETA, S. et al. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. International Journal of Infectious Diseases, v. 67, p. 25–35, 2018. DOI: 10.1016/j.ijid.2017.11.026. DOI: https://doi.org/10.1016/j.ijid.2017.11.026

                                  [8] LIU, Y. et al. Recent advances in synchrotron-based hard X-ray phase contrast imaging. Journal of Physics D: Applied Physics, v. 46, n. 49, p. 494001, 2013. DOI: 10.1088/0022-3727/46/49/494001. DOI: https://doi.org/10.1088/0022-3727/46/49/494001

                                  [9] MORIMOTO, J. et al. Assessing anatomical changes in male reproductive organs in response to larval crowding using micro-computed tomography imaging. Neotropical Entomology, v. 51, n. 4, p. 526–535, 2022. DOI: 10.1007/s13744-022-00989-6. DOI: https://doi.org/10.1007/s13744-022-00976-5

                                  [10] MUNDIM-POMBO, A. P. M. et al. Aedes aegypti: egg morphology and embryonic development. Parasites & Vectors, v. 14, p. 1–12, 2021. DOI: 10.1186/s13071-021-04642-3. DOI: https://doi.org/10.1186/s13071-021-05024-6

                                  [11] PERREAU, M.; HAELEWATERS, D.; TAFFOREAU, P. A parasitic coevolution since the Miocene revealed by phase-contrast synchrotron X-ray microtomography and the study of natural history collections. Scientific Reports, v. 11, n. 1, p. 2672, 2021. DOI: 10.1038/s41598-021-82397-0. DOI: https://doi.org/10.1038/s41598-020-79481-x

                                  [12] SENA, G. et al. Synchrotron X-ray biosample imaging: opportunities and challenges. Biophysical Reviews, v. 14, n. 3, p. 625–633, 2022. DOI: 10.1007/s12551-022-00945-3. DOI: https://doi.org/10.1007/s12551-022-00964-4

                                  [13] TOLWINSKI, N. S. Introduction: Drosophila – A model system for developmental biology. Journal of Developmental Biology, v. 5, n. 3, p. 9–10, 2017. DOI: 10.3390/jdb5030009. DOI: https://doi.org/10.3390/jdb5030009

                                  [14] VOMMARO, M. L. et al. Anatomical study of the red flour beetle using synchrotron radiation X‐ray phase‐contrast micro‐tomography. Journal of Anatomy, v. 242, n. 3, p. 510–524, 2023. DOI: 10.1111/joa.13829. DOI: https://doi.org/10.1111/joa.13796

                                  [15] WILKINS, S. W. et al. On the evolution and relative merits of hard X-ray phase-contrast imaging methods. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, v. 372, p. 20130021, 2014. DOI: 10.1098/rsta.2013.0021. DOI: https://doi.org/10.1098/rsta.2013.0021

                                  [16] YAMANY, A. S.; ADHAM, F. K.; ABDEL-GABER, R. Morphological description of the pupa of Aedes aegypti (Diptera: Culicidae) using a scanning electron microscope. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v. 76, n. 1, p. 43–54, 2024. DOI: 10.1590/1678-4162-14011. DOI: https://doi.org/10.1590/1678-4162-13120

                                  Downloads

                                  Publicado

                                  26-05-2025