Comparison of two methodologies for spectra analysis in coincidence neutron activation analysis
DOI:
https://doi.org/10.15392/bjrs.v9i1A.1540Palavras-chave:
coincidence neutron activation analysis, data reduction, analytical methods, nuclear instrumentationResumo
The Research Reactor Center (CERPq) of IPEN-CNEN/SP has been developing a facility for Coincidence Neutron Activation Analysis (CNAA), a variation of the Neutron Activation Analysis technique in which gamma-gamma coincidence is used to reduce spectral interferences and improve detection limits of some elements. As the acquisition results in 2D-coincidence spectra, the spectrum analysis has to be dealt with accordingly. There are two distinct ways to perform these analyses, either directly, by fitting bidimensional peaks in the coincidence matrix, or by gating the spectra in one detector around each peak of interest and fitting the resulting 1D-spectrum in the usual way. In this work, the concentrations of As, Co, Cs, Sb and Se were determined in geological and biological reference materials by CNAA using two different methodologies of analysis, using the BIDIM software, which provides 2D-peak-fitting; and a combination of the AnalisaCAEN suite, which gates the 2D-spectra, with Canberra’s Genie2000, which fits the resulting unidimensional spectra. The outcomes allow for a discussion of the advantages and shortcomings of each method, both in terms of usability and of the reliability of the results.
Downloads
Referências
RAHMAN, Atta-ur; OZKAN, S. A., Recent Advances In Analytical Techniques, BenthamScience, Sharjah & UAE (2019).
BRAMLITT, E. Gamma-Gamma Coincidence Counting Applied to Chlorine Analysis by Neutron Activation. Anal Chem, v. 38, p. 1669-1674, 1966.
EHMANN , W.; MCKOWN , D. Instrumental activation analysis of meteorites using gamma-gamma coincidence spectrometry. Anal Lett, v. 2, p. 49-60, 1969.
KIM, J. I.; SPEECKE, A., HOST, J. Neutron activation analysis of cooper in bismuth by gamma-gamma coincidence measurement. Anal Chim Acta, v. 33, p. 123-130, 1965.
COOPER, J. Radioanalytical Applications of Gamma-Gamma Coincidence Techniques with Lithium-Drifted Germanium Detectors. Anal Chem, v. 43, p. 838-845, 1971.
MEYER, G. Multiparameter coincidence spectrometry applied to the instrumental activation analysis of rocks and minerals. J Radioanal Nucl Chem, v. 114, p. 223-230, 1987.
HORNE, S.; LANDSBERGER, S. Selenium and mercury determination in biological samples using gamma-gamma coincidence and compton suppression,” J Radioanal Nucl Chem, v. 291, p. 49-53, 2012.
TOMLIN, B.; ZEISLER, R.; LINDSTROM, R. Gamma-gamma coincidence spectrometer for instrumental neutron activation analysis. Nucl Instrum Meth A, v. 589, p. 243-249, 2008.
<https://github.com/usnistgov/qpx-gamma>. Last accessed: 10 Oct 2019.
User´s manual digital gamma finder (DGF) Pixie 4. https://www.xia.com/Manuals/Pixie4_UserManual.pdf. Last accessed: 10 Oct 2019.
GUIMARÃES FILHO, Z. Medidas precisas de energias de transições gama em coincidên-cia: espectroscopia das séries do 232U e 233U, MSC Dissertation, University of São Paulo (1998).
GenieTM 2000 Spectroscopy Software. <https://www3.nd.edu/~wzech/Genie%202000%20Operations%20Manual.pdf>. Last accessed: 10 Oct 2019.
ZAHN, G.; GENEZINI, F.; RIBEIRO JR., I. AnalisaCAEN, a simple software suite to re-duce and analyze coincidence data collected using CAEN V1724 digitizer. J Phys Conf Ser, v. 1291:012044, 2019.
WASPTRA, A. The coincidence method. In: SIEGBAHN, K. Alpha-, beta- and gamma-ray spectroscopy, Amsterdam: North-Holland, 1965. p. 539-555.
ZAHN, G. S.; RIBEIRO JR., I. S.; GENEZINI, F. A. Pile-up correction for coincidence counting using a CAEN 1724 Digitizer. Braz J Rad Scien, v. 07, p. 1-10, 2019.
CAEN S. P. A. MC2Analyzer - user manual UM3182. CAEN, Viareggio, Italy, 2019.
KONIECZKA, P.; NAMIESNIK, J. Quality Assurance and Quality Control in the Ana-lytical Chemistry Laboratory, 1th ed, Boca Raton: CRC Press, 2009.
MCDOWELL, L. S.; GIFFEN, P. R.; CHATT, A. Determination of selenium in individual food items using the short-lived nuclide 77mSe. J Radioanal Nucl Chem, v. 110, p.519-529, 1987.
Downloads
Publicado
Edição
Seção
Licença
Direitos autorais (c) 2021 Brazilian Journal of Radiation Sciences

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista Brazilian Journal of Radiation Sciences, editada pela Sociedade Brasileira de Proteção Radiológica, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo à Sociedade Brasileira de Proteção Radiológica, que está autorizada a publicá-lo em meio impresso, digital, ou outro existente, sem retribuição financeira para os autores.
Licença
Os artigos do BJRS são licenciados sob uma Creative Commons Atribuição 4.0 Licença Internacional, que permite o uso, compartilhamento, adaptação, distribuição e reprodução em qualquer meio ou formato, desde que você dê o devido crédito ao (s) autor (es) original (is) e à fonte, forneça um link para a licença Creative Commons, e indique se mudanças foram feitas. As imagens ou outro material de terceiros neste artigo estão incluídos na licença Creative Commons do artigo, a menos que indicado de outra forma em uma linha de crédito para o material. Se o material não estiver incluído no licença Creative Commons do artigo e seu uso pretendido não é permitido por regulamentação legal ou excede o uso permitido, você precisará obter permissão diretamente do detentor dos direitos autorais. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/