Elementary characterization of samples of Portland cement, natural gypsum and phosphogypsum mortars from Brazil

Authors

  • Danielle Cristine Narloch Federal Technological University of Paraná
  • Sergei Anatolyevich Paschuk Federal Technological University of Paraná
  • Janine Nicolosi Corrêa Federal Technological University of Paraná
  • Juliana Machado Casali Federal Institute of Santa Catarina
  • Wellington Mazer Federal Technological University of Paraná
  • Catarina Alzira Montenegro Peddis Torres Federal Technological University of Paraná
  • Alessandro Luiz de Lara University of São Paulo
  • Gustavo Macioski Federal Technological University of Paraná
  • Allan Felipe Nunes Perna Federal Institute of Paraná

DOI:

https://doi.org/10.15392/bjrs.v7i2A.546

Keywords:

X-ray fluorescence, construction materials, gypsum, phosphogypsum, Portland cement.

Abstract

Portland cement, the basic ingredient of concrete and is manufactured by crushing, milling and proportioning limestone, sand, clay, iron ore and secondary materials such as shells, chalk or marl combined with shale slate or blast furnace slag, fly ash, gypsum, phosphogypsum, and some others. Evaluating the physical and mineralogical characteristics of the cement and its chemical composition is essential to establish the quality of the product. Therefore, the objective of this work was to characterize and quantify the most common chemical elements in the samples of Brazilian Portland cement, natural gypsum, and phosphogypsum mortars by means of X-ray dispersive energy spectroscopy (EDXRF), as well as to evaluate the strength of these mortars. For analysis of the compressive strength, initially prepared samples were submitted to a destructive mechanical test. Subsequently samples were milled and compacted to form thin tablets, which were submitted to the EDXRF analysis. The qualitative and quantitative analyzes showed that for phosphogypsum mortar the largest mass fractions were found of 49.8±2.5% (Si), 24.66±0.96% (S) and 22.10±0.42% (Ca). For gypsum mortar those values were found of 43.41±0.45% (Ca), 33.8 ± 0.8% (S) and 18.9±1.2% (Si), respectively; and for Portland cement mortar, the predominant elements in those samples have the mass fractions of 64.20±0.52% (Ca) and 27.3±1.5% (Si). The results showed that obtained values of mass fraction of the elements Si, S, K, Ca, Ti, Fe are in rather good agreement with quantities indicated for manufacture. Besides, gypsum and phosphogypsum presented almost the same composition and compressive strength.  

Downloads

Download data is not yet available.

References

METHA, P. K.; MONTEIRO, P. J. M. CONCRETE microstructure, properties and materials. California, United States of America, 2001.

NEVILLE, A.M.; BROOKS, J. J. Concrete Technology. Pearson: England, 2010.

British Cement Association. Concrete Practice, 3ª ed. 2002.

MATOS, T. H. C. Caracterização hidro-mecânica do fosfogesso e das misturas solo-fosfogesso. MSc dissertation. Universidade de Brasília Departamento de Energia Civil e Ambiental, Brasília, 2011.

COTA, S.D.S.; JACOMINO, V.M.F.; Taddei, M.H.T.; NASCIMENTO, M.R. Modelagem numérica do impacto ambiental associado à aplicação de fosfogesso como cobertura de aterros sanitários. Associação Brasileira de Águas Subterrâneas – ABAS. Águas Subterrâneas. v. 26.p. 27-42, 2012.

CANUT, M. M. C. Estudo da viabilidade do uso do resíduo fosfogesso como material de construção. (MSc dissertation). Programa de Pós-Graduação em Construção Civil – Universidade Federal de Minas Gerais, Belo Horizonte, 2006.

BRIENZA, S. M. B.; FILHO, V. F. N.; MOREIRA, S.; VIVES, A. E. S. Emprego da fluorescência de raios X dispersiva para avaliação da poluição por metais pesados em amostras de água e sedimentos de lagos. São Paulo, Brazil, 2002.

BUENO, M. I. M. J.; NAGATA, N; PERALTA-ZAMORA P. G. Métodos matemáticos para correção de interferências espectrais e efeitos interelementos na análise quantitativa por fluorescência de raios X. Química Nova. V 24, nº 4, 531-539, 2001.

SILVA, R. M. C. E. Utilização da técnica de fluorescência de raios X com microssonda (µ - XRF) aplicada a amostras de interesse arqueológico. Doctor Thesis, São Paulo, 2002.

Associação Brasileira de Normas Técnicas. NBR 7215: Cimento Portland – Determinação da resistência à compressão. Rio de Janeiro, 1996.

NARLOCH, D.C.; PASCHUK, S.A.; CASALI, J. M.; CORRÊA, J. N.; DEL CLARO, F.; MACIOSKI, G. Medidas da concentração de radônio-222 em cimento, fosfogesso e gesso. X Congreso Regional Latinoamericano IRPA de Protección y Seguridad Radiológica “Radioprotección: Nuevos Desafíos para un Mundo en Evolución”, Buenos Aires, Argentina, 2015.

FERRARIS, C. F.; GUTHRIE, W.; AVILÉS, A. I.; HAUPT, R.; MACDONALD, B. S. NIST Special Publication. Certification of SRM 114q: Part I. NIST – National Institute of Standards and Technology. Available at: <http://www.nist.gov/srm/upload/SP260-161.pdf>. Last accessed: 20 dec 2016.

EL-AFIFI, E. M.; HILAL, M. A.; ATTALLAH, M. F.; EL-REEFY, S. A. Characterization of Phosphogypsum Wastes Associated with Phosphoric Acid and Fertilizers Production. Journal of Environmental Radioactivity 100. Elsevier. p. 407-412, 2009.

Downloads

Published

2019-02-06

Issue

Section

The Meeting on Nuclear Applications (ENAN)

How to Cite

Elementary characterization of samples of Portland cement, natural gypsum and phosphogypsum mortars from Brazil. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 7, n. 2A (Suppl.), 2019. DOI: 10.15392/bjrs.v7i2A.546. Disponível em: https://www.bjrs.org.br/revista/index.php/REVISTA/article/view/546.. Acesso em: 4 may. 2024.

Similar Articles

1-10 of 303

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)