Influence of Graphene Quantum Dots (GQDs) on the Sorption of ¹³⁷Cs and ⁶⁰Co in Soils from the Brazilian Semiarid Region

Authors

  • Tatiane Rocha Pereira Instituto de Radioproteção e Dosimetria
  • Maria Angélica Vergara Wasserman Instituto de Radioproteção e Dosimetria
  • Michele Maria da Silva Instituto de Radioproteção e Dosimetria
  • Manuella Borges Barreto Instituto de Radioproteção e Dosimetria
  • Wanderson de Oliveira Sousa Instituto de Radioproteção e Dosimetria
  • Érika Flávia Machado Pinheiro Universidade Federal Rural do Rio de Janeiro
  • Daniel Vidal Perez EMBRAPA Solos
  • Antonio Celso Dantas Antonino Universidade Federal de Pernambuco
  • Marcelo Metri Correa Universidade Federal do Agreste de Pernambuco

DOI:

https://doi.org/10.15392/2319-0612.2025.2803

Keywords:

Nanoparticles, Acrisol, Ferralsol, radionuclides

Abstract

Graphene Quantum Dots (GQDs) represent a new class of nanomaterials that, due to their optical, electronic, and chemical properties, have gained attention for various applications in industry, health, and the environment. However, the understanding of their dynamics and behavior in different environmental compartments is still in its early stages, requiring further research, although recent studies have already highlighted their potential for the remediation of polluted environments. While knowledge about the behavior of radionuclides in soils has advanced, research on semi-arid soils remains limited, both nationally and internationally. To address some of these gaps, this study determined the distribution coefficient (Kd) values for 137Cs and 60Co in some soils from the Brazilian semiarid region (Latossolo and Argissolo, respectively Ferralsol and Acrisol in the FAO classification), considering variations in pH and the presence or absence of GQDs. The obtained Kd values for 137Cs and 60Co showed different responses of the soils to the radionuclides, pH variations, and/or the presence of GQDs. The geometric mean of 137Cs Kd values to the studied soils were 510 mL g-1 in the Acrisol and 1730 mL g-1 in the Ferralsol, differing from the generic values found in the literature, which are often used as standard in radioecological models due to the lack of regional data. The geometric mean for 60Co Kd values were 791 mL g-1 in the Acrisol and 395 mL g-1 in the Ferralsol, also diverging from the generic literature values. These results highlight the responses of certain Brazilian soils to the introduction of exogenous materials and the need to obtain specific Kd values for semi-arid soils, aiming to improve environmental protection strategies.

Downloads

Download data is not yet available.

References

[1] KONOPLEV, A. Fukushima and Chernobyl: similarities and differences of radiocesium behavior in the soil–water environment. Toxics, v. 10, n. 10, p. 578, 2022. https://doi.org/10.3390/toxics10100578 DOI: https://doi.org/10.3390/toxics10100578

[2] BHATTACHARYA, N., CAHILL, D.M., YANG, W., KOCHAR, M. Graphene as a nano-delivery vehicle in agriculture–current knowledge and future prospects. Critical Reviews in Biotechnology, v. 43, n. 6, p. 851-869, 2023. https://doi.org/10.1080/07388551.2022.2090315 DOI: https://doi.org/10.1080/07388551.2022.2090315

[3] DING, X., PU, Y., TANG, M., ZHANG, T. Environmental and health effects of graphene-family nanomaterials: potential release pathways, transformation, environmental fate and health risks. Nano Today, v. 42, p. 101379, 2022. DOI: https://doi.org/10.1016/j.nantod.2022.101379

[4] FRISSEL, M.J., DEB, D.L., FATHONY, M., LIN, Y.M., MOLLAH, A.S., NGO, N.T., OTHMAN, I., ROBISON, W.L., SKARLOU-ALEXIOU, V., TOPCUOĞLU, S., TWINING, J.R., UCHIDA, S., WASSERMAN, M.A. Generic values for soil-to-plant transfer factors of radiocesium. Journal of Environmental Radioactivity, v. 58, n. 2-3, p. 113-128, 2002. DOI: https://doi.org/10.1016/S0265-931X(01)00061-3

[5] WASSERMAN, M. A., PÉREZ, D. V., BOURG, A. C. M. Behavior of cesium-137 in some Brazilian oxisols. Communications in soil science and plant analysis, v. 33, n. 7-8, p. 1335-1349, 2002. DOI: https://doi.org/10.1081/CSS-120003891

[6] WASSERMAN, M. A., VIANA, A. G., BARTOLY, F., PEREZ, D. V., CONTI, C. C., ROCHEDO, E. R., VIVONE, R. J. The assessment of radiovulnerability in agroecosystems. In: International Nuclear Atlantic Conference-INAC. 2005.

[7] WASSERMAN, M. A., BARTOLY, F., VIANA, A. G., SILVA, M. M., ROCHEDO, E. R. R., PEREZ, D. V., CONTI, C. Soil to plant transfer of 137Cs and 60Co in Ferralsol, Nitisol and Acrisol. Journal of environmental radioactivity, v. 99, n. 3, p. 546-553, 2008. DOI: https://doi.org/10.1016/j.jenvrad.2007.08.010

[8] WASSERMAN, M. A. et al. The effect of organic amendment on potential mobility and bioavailability of 137Cs and 60Co in tropical soils. Journal of Environmental Radioactivity, v. 99, n. 3, p. 554-562, 2008. DOI: https://doi.org/10.1016/j.jenvrad.2007.08.012

[9] TAGAMI, K.; TWINING, J. R.; WASSERMAN, M. A. V. Terrestrial radioecology in tropical systems. In: Radioactivity in the Environment. Elsevier, p. 155-230, 2012 DOI: https://doi.org/10.1016/B978-0-08-045016-2.00005-9

[10] HIRD, A. B.; RIMMER, D. L.; LIVENS, F. R. Factors affecting the sorption and fixation of caesium in acid organic soil. European Journal of Soil Science, v. 47, n. 1, p. 97-104, 1996. DOI: https://doi.org/10.1111/j.1365-2389.1996.tb01376.x

[11] ABA, A., AL-BOLOUSHI, O., ISMAEEL, A., AL-TAMIMI, S. ABA, ABDULAZIZ et al. Migration behavior of radiostrontium and radiocesium in arid-region soil. Chemosphere, v. 281, p. 130953, 2021. https://doi.org/10.1016/j.chemosphere.2021.13 DOI: https://doi.org/10.1016/j.chemosphere.2021.130953

[12] SEMIOSCHKINA, N.; VOIGT, G. Concentration Ratios for Plant Crops in Arid Environments. 2021. In: IAEA-TECDOC--1979. Available at: https://www.iaea.org/publications/14980/soil-plant-transfer-of-radionuclides-in-non-temperate-environments. Accessed on: 2 Dec. 2023

[13] WASSERMAN, M. A. V et al. Safety and environmental issues for construction of a nuclear power plant at Brazilian northeast semi-arid. Instituto de Engenharia Nuclear: Progress Report, n. 1, p. 105-105, 2013.

[14] FAO – Food Agriculture Organization of United Nations. The State of Food and Agriculture. Climate Change, Agriculture and Food Security. Rome. 2016

[15] MARQUES, T. V., MENDES, K., MUTTI, P., MEDEIROS, S., SILVA, L., PEREZ-MARIN, A. M., BEZERRA, B. Environmental and biophysical controls of evapotranspiration from Seasonally Dry Tropical Forests (Caatinga) in the Brazilian Semiarid. Agricultural and Forest Meteorology, v. 287, p. 107957, 2020 DOI: https://doi.org/10.1016/j.agrformet.2020.107957

[16] CORRÊA, L. M., NASCIMENTO, F. R. The Expansion of the Semiarid in Areas Susceptible to Desertification (ASDS) in the Itaúnas River Basin – ES. International Journal Semiarid, v. 6, n. 6, 2023. https://doi.org/10.56346/ijsa.v6i6.155 DOI: https://doi.org/10.56346/ijsa.v6i6.155

[17] SA, I. B. Semiárido brasileiro: pesquisa, desenvolvimento e inovação. Petrolina: EMBRAPA Semiárido, 2010.

[18] REBOUÇAS, A. DA C. Água na região Nordeste: desperdício e escassez. Estudos Avançados, v. 11, n. 29, p. 127–154, Jan. 1997. DOI: https://doi.org/10.1590/S0103-40141997000100007

[19] GIONGO, V.; ANGELOTTI, F. (ed.). Agricultura de baixa emissão de carbono em regiões semiáridas: experiência brasileira. Brasília, DF: EMBRAPA, 2022.

[20] MONTALVÁN-OLIVARES, D.M., SANTANA, C.S., VELASCO, F.G. et al. Multi-element contamination in soils from major mining areas in Northeastern of Brazil. Environmental Geochemistry and Health, v. 43, n. 11, p. 4553-4576, 2021. https://doi.org/10.1007/s10653-021-00934-x. DOI: https://doi.org/10.1007/s10653-021-00934-x

[21] IAEA - International Atomic Energy Agency. Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Technical Reports Series no. 472. Vienna. International Atomic Energy Agency, 2010.

[22] SOARES, M. R. Coeficiente de distribuição (Kd) de metais pesados em solos do estado de São Paulo. Tese de Doutorado. Universidade de São Paulo.2004

[23] USEPA - United States Environmental Protection Agency. Partition Coefficient, Kd. Understanding variation in Partition Coefficient, Kd Values. EPA 402-R-04-002C. 2004. Available at: https://19january2021snapshot.epa.gov/sites/static/files/2015-05/documents/402-r-04-002c.pdf. Accessed on: 27 Dec. 2023

[24] CORREIA, R. C., KIILL, L. H. P., MOURA, M. S. B. de, CUNHA, T. J. F., JESUS JUNIOR, L. A., de ARAUJO, J. L. P. A região semiárida brasileira. In: VOLTOLINI, T. V. (Ed.). Produção de caprinos e ovinos no Semiárido. Petrolina: EMBRAPA Semiárido, cap. 1, p. 21-48, 2011.

[25] JACOMINE, P. K. T., CAVALCANTI, A. C., BURGOS, N., PESSOA, S. C. P., SILVEIRA, C. O. da. Levantamento exploratório - reconhecimento de solos do Estado de Pernambuco. In: Divisão de Pesquisa Pedológica: Recife, SUDENE-DRN, 1972-1973.

[26] SANTOS, R.D.; LEMOS, R.C.; SANTOS, H.G.; KER, J.C.; ANJOS, L.H.C.; SHIMIZU, S.H. Manual de Descrição e Coleta de Solo no Campo. 6a Edição. Viçosa. Sociedade Brasileira de Ciência do Solo, 102p. 2015.

[27] OLIVEIRA, L. B. de. Manual de métodos de análise de solo. EMBRAPA-CNPS. EMBRAPA, Rio de Janeiro, RJ.1997

[28] SILVA, F. C. da. Manual de análises químicas de solos, plantas e fertilizantes. Brasília, DF: EMBRAPA Informação Tecnológica; Rio de Janeiro: EMBRAPA Solos, 2009

[29] WHICKER, F. W. et al. Quantities, units and terms in radioecology. Journal of the ICRU, v. 1, n. 2, p. 7-7, 2001. DOI: https://doi.org/10.1093/jicru_1.2.7

[30] GRIFFIN, R, SACK, W, ROY, W, AINSWORTH, C. Batch Type 24-h Distribution Ratio for Contaminant Adsorption by Soil Materials. In: Hazardous and Industrial Solid Waste Testing and Disposal: Sixth Volume. ASTM International, 1986. DOI: https://doi.org/10.1520/STP23093S

[31] USEPA - United States Environmental Protection Agency. Partition Coefficient, Kd. Understanding variation in Partition Coefficient, Kd Values. EPA 4402-R-99-004-B: Washington, 1999 Available at: https://www.epa.gov/sites/default/files/2015-05/documents/402-r-99-004b.pdf. Accessed on: 27 Dec. 2023

[32] VIJEATA, Anjali et al. Sustainable agronomic response of carbon quantum dots on Allium sativum: Translocation, physiological responses and alternations in chromosomal aberrations. Environmental Research, v. 212, p. 113559, 2022. DOI: https://doi.org/10.1016/j.envres.2022.113559

[33] GIL-GARCÍA, C.; RIGOL, A.; VIDAL, M. New best estimates for radionuclide solid–liquid distribution coefficients in soils, Part 1: radiostrontium and radiocaesium. Journal of environmental radioactivity, v. 100, n. 9, p. 690-696, 2009. DOI: https://doi.org/10.1016/j.jenvrad.2008.10.003

[34] CALÁBRIA, J. A. A.; LADEIRA, A. C. Q.; COTA, S. D. S.; RODRIGUES, P. C. H. Estudo da sorção de césio em solos: avaliação do desempenho em repositório de rejeitos radioativos. Revista Ibero-Americana de Ciências Ambientais, v.8, n.2, p.190-204, 2017. DOI: http://doi.org/10.6008/SPC2179-6858.2017.002.0016 DOI: https://doi.org/10.6008/SPC2179-6858.2017.002.0016

[35] GARCIA, R. J. de L. A influência da adubação orgânica nos mecanismos de sorção do Cobalto e do Césio em solos tropicais. 2008. 96 f. Dissertação (mestrado) - Instituto de Radioproteção e Dosimetria, Comissão Nacional de Energia Nuclear, Rio de Janeiro, 2008.

[36] GHABBOUR, E. A.; SCHEINOST, A. C.; DAVIES, G. XAFS studies of cobalt (II) binding by solid peat and soil-derived humic acids and plant-derived humic acid-like substances. Chemosphere, v. 67, n. 2, p. 285-291, 2007. DOI: https://doi.org/10.1016/j.chemosphere.2006.09.094

[37] CUI Y, LIU L, SHI M, WANG Y, MENG X, CHEN Y, HUANG Q, LIU C. Review of Advances in Graphene Quantum Dots: From Preparation and Modification Methods to Application. C, v. 10, n. 1, p. 7, 2024. DOI: https://doi.org/10.3390/c10010007

[38] GIL-GARCÍA, C. et al. New best estimates for radionuclide solid–liquid distribution coefficients in soils. Part 3: miscellany of radionuclides (Cd, Co, Ni, Zn, I, Se, Sb, Pu, Am, and others). Journal of Environmental Radioactivity, v. 100, n. 9, p. 704-715, 2009. DOI: https://doi.org/10.1016/j.jenvrad.2008.12.001

Downloads

Published

2025-04-18

Issue

Section

Articles

How to Cite

Influence of Graphene Quantum Dots (GQDs) on the Sorption of ¹³⁷Cs and ⁶⁰Co in Soils from the Brazilian Semiarid Region. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 13, n. 2, p. e2803, 2025. DOI: 10.15392/2319-0612.2025.2803. Disponível em: https://www.bjrs.org.br/revista/index.php/REVISTA/article/view/2803. Acesso em: 30 apr. 2025.