Effect of radiobiological parameters on the TCP for breast cancer radiotherapy

Authors

  • Luany Furlan Universidade Federal de Ciências da Saúde de Porto Alegre
  • Mairon Marques dos Santos IF Goiano - Campus Ceres
  • Thatiane A. Pianoschi Universidade Federal de Ciências da Saúde de Porto Alegre

DOI:

https://doi.org/10.15392/2319-0612.2024.2532

Keywords:

breast cancer , radiobiology, tumor control probability

Abstract

Breast cancer remains the most prevalent malignancy affecting women globally. Among the various treatment modalities, radiotherapy stands out as a cornerstone for tumor eradication. This research explores the impact of radiosensitivity parameters on Tumor Control Probability (TCP) in breast cancer, with an emphasis on distinct radiotherapeutic techniques such as conventional, hypofractionated, and FAST, as well as the role of tumor repopulation. Based on the literature review, we obtained data on α and β radiosensitivity parameters, cell repopulation rates and standard breast cancer treatment protocols. These parameters informed the calculation of the fraction of cells surviving irradiation via the linear-quadratic model, facilitating an assessment of treatment efficacy through the Poissonian TCP model. Our findings underscore the critical influence of radiosensitivity parameters α and β on treatment outcomes, with β emerging as the predominant factor due to its quadratic contribution to the survival fraction. Moreover, our analysis indicates that tumor growth is negligible relative to the substantial cell mortality induced by radiation in the case of breast cancer. Techniques such as FAST and hypofractionated radiotherapy were identified as particularly effective, offering expedited tumor control, especially with elevated α and β values. The quadratic term β significantly enhances treatment success, while tumor repopulation exerts minimal influence on TCP, corroborating previous model comparisons. Notably, higher doses per fraction, rather than increased cumulative doses, were associated with improved TCP, providing a critical insight for optimizing radiotherapy protocols. Currently, radiobiology is not systematically integrated into clinical practice, and its analysis through PCT optimizes radiotherapy treatments, improving patient quality of life and healthcare delivery.

Downloads

Download data is not yet available.

Author Biographies

  • Luany Furlan, Universidade Federal de Ciências da Saúde de Porto Alegre

    Undergraduated in Medical Physics from UFCSPA; - Co-founder of Irradiation - Consultoria em Física Médica; - Trainee in the Medical Physics and Radioprotection Service at Hospital de Clínicas de Porto Alegre.

  • Thatiane A. Pianoschi, Universidade Federal de Ciências da Saúde de Porto Alegre

    She holds a degree in Medical Physics from the University of São Paulo (2006), a Master's degree in Physics Applied to Medicine and Biology from the University of São Paulo (2008), and a Ph.D. in Physics Applied to Medicine and Biology from the University of São Paulo (2014). She is currently a professor at the Federal University of Health Sciences Foundation in Porto Alegre. She has experience in medical physics with a focus on radiotherapy. He is currently interested in radiodiagnostics, radiobiology and artificial intelligence. She participates in the uniprofessional residency program in Medical Physics with an emphasis in Radiotherapy. She is also a professor in the postgraduate program in Information Technology and Health Management.

References

ARNOLD, M.; MORGAN, E.; RUMGAY, H.; MAFRA, A.; SINGH, D.; LAVERSANNE, M.; VIGNAT, J.; GRALOW, J. R.; CARDOSO, F.; SIESLING, S; SOERJOMATARAM, I. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast, 2022 Dec;66:15-23. DOI: https://doi.org/10.1016/j.breast.2022.08.010

MINISTÉRIO DA SAÚDE. Dados e números sobre câncer de mama [Internet]. Rio de Janeiro: INCA; set 2023, 36 p. Avaliable in: https://www.inca.gov.br/publicacoes/relatorios/dados-e-numeros-sobre-cancer-de-mama-relatorio-anual-2023. Acesso em: 14 maio 2024.

CAMPOS, L.; SANTOS, J. R.; SOUZA, D. N.; ATTIE, M. R. P. Relevant aspects of hypofractionation in breast and prostate radiotherapy. Res Soc Dev. 2021 May 5.

BROWN, J. S.; AMEND, S. R.; AUSTIN, R. H.; GATENBY, R. A.; HAMMARLUND, E. U.; PIENTA, K. J. Updating the Definition of Cancer. AACR Journals. 2023 Nov. DOI: https://doi.org/10.1158/1541-7786.MCR-23-0411

O'SHAUGHNESSY, J. A. Treating breast precancer. Clin Breast Cancer. 2000 Sep;1 Suppl 1:S74-9 DOI: https://doi.org/10.3816/CBC.2000.s.014

LIMA, B. D.; COSTA, C. L.; CAVALCANTE, K. A.; PEREIRA, S. M.; BRITO, M. A.; JIMENEZ, K. L. Desenvolvimento de protocolo de acompanhamento farmacoterapêutico a pacientes em tratamento de câncer de mama/ Development of a pharmacotherapeutic follow-up protocol for patients undergoing breast cancer treatment. Braz J Health Rev. 2021 May 24;4(3):11321-40. DOI: https://doi.org/10.34119/bjhrv4n3-132

DOURADO, C. A.; SANTOS, C. M.; SANTANA, V. M.; GOMES, T. N.; CAVALCANTE, L. T.; DE LIMA, M. C. Câncer de mama e análise dos fatores relacionados aos métodos de detecção e estadiamento da doença. Cogitare Enferm. 2022 May 27;27. DOI: https://doi.org/10.5380/ce.v27i0.81039

KIM, N.; KIM,Y. B. Journey to hypofractionation in radiotherapy for breast cancer: critical reviews for recent updates. Radiat Oncol J. 2022 Dec; 40(4): 216–224. Published online 2022 Dec 26. doi: 10.3857/roj.2022.00577. DOI: https://doi.org/10.3857/roj.2022.00577

FANG, M.; MARTA, G. N.; Hypofractionated and hyper-hypofractionated radiation therapy in postoperative breast cancer treatment. Rev Assoc Bras. 2020 sept; 66 (9). DOI: https://doi.org/10.1590/1806-9282.66.9.1301

Brunt AM, Haviland JS, Wheatley DA, et al. One versus three weeks hypofractionated whole breast radiotherapy for early breast cancer treatment: the FAST-Forward phase III RCT. Southampton (UK): National Institute for Health and Care Research; 2023 Nov. (Health Technology Assessment, No. 27.25.) Available from: https://www.ncbi.nlm.nih.gov/books/NBK597550/ doi: 10.3310/WWBF1044. DOI: https://doi.org/10.3310/WWBF1044

BRADY, R.; ENDERLING, H. Mathematical Models of Cancer: When to Predict Novel Therapies, and When Not to. Bull Math Biol. 2019 Oct;81(10):3722-3731. doi: 10.1007/s11538-019-00640-x. Epub 2019 Jul 23. DOI: https://doi.org/10.1007/s11538-019-00640-x

PAIXÃO, L.; OLIVEIRA, B. B.; VILORIA, C.; DE OLIVEIRA, M. A.; TEIXEIRA, M. H.; NOGUEIRA, M. D. O. Monte Carlo derivation of filtered tungsten anode X-ray spectra for dose computation in digital mammography. Radiol Bras. 2015 Nov-Dec;48(6):363-7. DOI: https://doi.org/10.1590/0100-3984.2014.0108

VIEIRA, L. C.; COSTA, R. S.; VALÉRIO, D. An overview of mathematical modelling in cancer research: fractional calculus as modelling tool. Fractal Fract [Internet]. 2023 Aug 11;7(8):595. DOI: https://doi.org/10.3390/fractalfract7080595

CUI, M.; GAO, X. S.; LI, X.; MA, M.; QI, X.; SHIBAMOTO, Y. Variability of α/β ratios for prostate cancer with the fractionation schedule: caution against using the linear-quadratic model for hypofractionated radiotherapy. Radiat Oncol. 2022 Mar 18;17(1). DOI: https://doi.org/10.1186/s13014-022-02010-9

LEA, D. E.; CATCHESIDE, D. G. The mechanism of the induction by radiation of chromosome aberrations inTradescantia. J Genet [Internet]. 1943 Dec 44(2-3):216-45. DOI: https://doi.org/10.1007/BF02982830

SINCLAIR, W. K. Biophysical Aspects of Radiation Quality. International Atomic Energy Agency; Vienna, Austria: 1966. The shape of radiation survival curves of mammalian cells cultured in vitro. [Google Scholar]

LYON, M. F.; PHILLIPS, R. J.; FISHER, G. Dose-response curves for radiation-induced gene mutations in mouse oocytes and their interpretation. Mutat Res. 1979 Nov;63(1):161-73. DOI: https://doi.org/10.1016/0027-5107(79)90113-1

MCMAHON, S. J. The linear quadratic model: usage, interpretation and challenges. IOPscience. 2018 Dec. Institute of Physics and Engineering in Medicine. Available from: https://iopscience.iop.org/article/10.1088/1361-6560/aaf26a. DOI: https://doi.org/10.1088/1361-6560/aaf26a

O'SHEA, K.; COLEMAN, L.; FAHY, L.; KLEEFELD, C.; FOLEY, M. J.; MOORE, M. Compensation for radiotherapy treatment interruptions due to a cyberattack: An isoeffective DVH‐based dose compensation decision tool. J Appl Clin Med Phys. 2022 Jul 22. DOI: https://doi.org/10.1002/acm2.13716

SANTOS, M. M. Probabilidade de controle tumoral: modelos e estatísticas [Internet]: Universidade de São Paulo; 2014 [citado 15 maio 2024]. Avalilable from: http://www.teses.usp.br/teses/disponiveis/59/59135/tde-05012015-160705/.

van Leeuwen, C.M., Oei, A.L., Crezee, J. et al. The alfa and beta of tumours: a review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies. Radiat Oncol 13, 96 (2018). https://doi.org/10.1186/s13014-018-1040-z DOI: https://doi.org/10.1186/s13014-018-1040-z

QI, X. S.; WHITE, J.; LI, X. A. Is α/β for breast cancer really low? Radiother Oncol. 2011 Aug;100(2):282-8. DOI: https://doi.org/10.1016/j.radonc.2011.01.010

WANG, J. Z.; LI, X. A. Impact of tumor repopulation on radiotherapy planning. Int J Radiat Oncol Biol Phys. 2005 Jan 1;61(1):220-7. DOI: https://doi.org/10.1016/j.ijrobp.2004.09.043

The Royal College of Radiologists. Radiology dose fractionation, third edition. London: The RoyalCollege of Radiologist, 2019.

HAUSSMANN, J.; CORRADINI, S.; NESTLE-KRAEMLING, C.; BÖLKE, E.; NJANANG, F. J. D.; TAMASKOVICS, B.; ORTH, K.; RUCKHAEBERLE, E.; FEHM, T.; MOHRMANN, S.; SIMIANTONAKIS, I.; BUDACH, W.; MATUSCHEK, C. Recent advances in radiotherapy of breast cancer. Radiat Oncol. 2020 Mar 30;15(1):71. DOI: https://doi.org/10.1186/s13014-020-01501-x

HENNEQUIN, C.; BELKACÉMI, Y.; BOURGIER, C.; COWEN, D.; CUTULI, B.; FOURQUET, A.; HANNOUN-LÉVI, J. M.; PASQUIER, D.; RACADOT, S.; RIVERA, S. Radiotherapy of breast cancer. Cancer Radiother. 2022 Fev;26(1-2):221-30. DOI: https://doi.org/10.1016/j.canrad.2021.11.013

GONG, J; DOS SANTOS, M. M.; FINLAY, C.; HILLEN, T. Are more complicated tumour control probability models better? Math Med Biol. 2013 Mar;30(1):1-19. DOI: https://doi.org/10.1093/imammb/dqr023

HE, R.; DUGGAR, W. N.; YANG, C. C; VIJAYAKUMAR, S. Model development of dose and volume predictors for esophagitis induced during chemoradiotherapy for lung cancer as a step towards radiobiological treatment planning. BMC Pulm Med. 2023 Oct 9;23(1). DOI: https://doi.org/10.1186/s12890-023-02667-2

LIU, F.; VERVERS, J. D.; FARRIS, M. K.; BLACKSTOCK, A. W. JR.; MUNLEY, M. T. Optimal Radiation Therapy Fractionation Regimens for Early-Stage Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys. 2024 Mar 1;118(3):829-838. DOI: https://doi.org/10.1016/j.ijrobp.2023.09.017

COOPER, GM. The Cell: A Molecular Approach. 2nd Edition. National Library of Medicine. 2000. Available in: https://www.ncbi.nlm.nih.gov/books/NBK9963/.

Joiner M, Van der Kogel A, editores. Basic clinical radiobiology. 4th ed. London: Hodder Arnold; 2009. p.50. DOI: https://doi.org/10.1201/b15450

Downloads

Published

2024-12-06

Issue

Section

Articles

How to Cite

Effect of radiobiological parameters on the TCP for breast cancer radiotherapy. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 4, p. e2532, 2024. DOI: 10.15392/2319-0612.2024.2532. Disponível em: https://www.bjrs.org.br/revista/index.php/REVISTA/article/view/2532. Acesso em: 2 may. 2025.