Effect of radiobiological parameters on the TCP for breast cancer radiotherapy
DOI:
https://doi.org/10.15392/2319-0612.2024.2532Keywords:
breast cancer , radiobiology, tumor control probabilityAbstract
Breast cancer remains the most prevalent malignancy affecting women globally. Among the various treatment modalities, radiotherapy stands out as a cornerstone for tumor eradication. This research explores the impact of radiosensitivity parameters on Tumor Control Probability (TCP) in breast cancer, with an emphasis on distinct radiotherapeutic techniques such as conventional, hypofractionated, and FAST, as well as the role of tumor repopulation. Based on the literature review, we obtained data on α and β radiosensitivity parameters, cell repopulation rates and standard breast cancer treatment protocols. These parameters informed the calculation of the fraction of cells surviving irradiation via the linear-quadratic model, facilitating an assessment of treatment efficacy through the Poissonian TCP model. Our findings underscore the critical influence of radiosensitivity parameters α and β on treatment outcomes, with β emerging as the predominant factor due to its quadratic contribution to the survival fraction. Moreover, our analysis indicates that tumor growth is negligible relative to the substantial cell mortality induced by radiation in the case of breast cancer. Techniques such as FAST and hypofractionated radiotherapy were identified as particularly effective, offering expedited tumor control, especially with elevated α and β values. The quadratic term β significantly enhances treatment success, while tumor repopulation exerts minimal influence on TCP, corroborating previous model comparisons. Notably, higher doses per fraction, rather than increased cumulative doses, were associated with improved TCP, providing a critical insight for optimizing radiotherapy protocols. Currently, radiobiology is not systematically integrated into clinical practice, and its analysis through PCT optimizes radiotherapy treatments, improving patient quality of life and healthcare delivery.
Downloads
References
ARNOLD, M.; MORGAN, E.; RUMGAY, H.; MAFRA, A.; SINGH, D.; LAVERSANNE, M.; VIGNAT, J.; GRALOW, J. R.; CARDOSO, F.; SIESLING, S; SOERJOMATARAM, I. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast, 2022 Dec;66:15-23. DOI: https://doi.org/10.1016/j.breast.2022.08.010
MINISTÉRIO DA SAÚDE. Dados e números sobre câncer de mama [Internet]. Rio de Janeiro: INCA; set 2023, 36 p. Avaliable in: https://www.inca.gov.br/publicacoes/relatorios/dados-e-numeros-sobre-cancer-de-mama-relatorio-anual-2023. Acesso em: 14 maio 2024.
CAMPOS, L.; SANTOS, J. R.; SOUZA, D. N.; ATTIE, M. R. P. Relevant aspects of hypofractionation in breast and prostate radiotherapy. Res Soc Dev. 2021 May 5.
BROWN, J. S.; AMEND, S. R.; AUSTIN, R. H.; GATENBY, R. A.; HAMMARLUND, E. U.; PIENTA, K. J. Updating the Definition of Cancer. AACR Journals. 2023 Nov. DOI: https://doi.org/10.1158/1541-7786.MCR-23-0411
O'SHAUGHNESSY, J. A. Treating breast precancer. Clin Breast Cancer. 2000 Sep;1 Suppl 1:S74-9 DOI: https://doi.org/10.3816/CBC.2000.s.014
LIMA, B. D.; COSTA, C. L.; CAVALCANTE, K. A.; PEREIRA, S. M.; BRITO, M. A.; JIMENEZ, K. L. Desenvolvimento de protocolo de acompanhamento farmacoterapêutico a pacientes em tratamento de câncer de mama/ Development of a pharmacotherapeutic follow-up protocol for patients undergoing breast cancer treatment. Braz J Health Rev. 2021 May 24;4(3):11321-40. DOI: https://doi.org/10.34119/bjhrv4n3-132
DOURADO, C. A.; SANTOS, C. M.; SANTANA, V. M.; GOMES, T. N.; CAVALCANTE, L. T.; DE LIMA, M. C. Câncer de mama e análise dos fatores relacionados aos métodos de detecção e estadiamento da doença. Cogitare Enferm. 2022 May 27;27. DOI: https://doi.org/10.5380/ce.v27i0.81039
KIM, N.; KIM,Y. B. Journey to hypofractionation in radiotherapy for breast cancer: critical reviews for recent updates. Radiat Oncol J. 2022 Dec; 40(4): 216–224. Published online 2022 Dec 26. doi: 10.3857/roj.2022.00577. DOI: https://doi.org/10.3857/roj.2022.00577
FANG, M.; MARTA, G. N.; Hypofractionated and hyper-hypofractionated radiation therapy in postoperative breast cancer treatment. Rev Assoc Bras. 2020 sept; 66 (9). DOI: https://doi.org/10.1590/1806-9282.66.9.1301
Brunt AM, Haviland JS, Wheatley DA, et al. One versus three weeks hypofractionated whole breast radiotherapy for early breast cancer treatment: the FAST-Forward phase III RCT. Southampton (UK): National Institute for Health and Care Research; 2023 Nov. (Health Technology Assessment, No. 27.25.) Available from: https://www.ncbi.nlm.nih.gov/books/NBK597550/ doi: 10.3310/WWBF1044. DOI: https://doi.org/10.3310/WWBF1044
BRADY, R.; ENDERLING, H. Mathematical Models of Cancer: When to Predict Novel Therapies, and When Not to. Bull Math Biol. 2019 Oct;81(10):3722-3731. doi: 10.1007/s11538-019-00640-x. Epub 2019 Jul 23. DOI: https://doi.org/10.1007/s11538-019-00640-x
PAIXÃO, L.; OLIVEIRA, B. B.; VILORIA, C.; DE OLIVEIRA, M. A.; TEIXEIRA, M. H.; NOGUEIRA, M. D. O. Monte Carlo derivation of filtered tungsten anode X-ray spectra for dose computation in digital mammography. Radiol Bras. 2015 Nov-Dec;48(6):363-7. DOI: https://doi.org/10.1590/0100-3984.2014.0108
VIEIRA, L. C.; COSTA, R. S.; VALÉRIO, D. An overview of mathematical modelling in cancer research: fractional calculus as modelling tool. Fractal Fract [Internet]. 2023 Aug 11;7(8):595. DOI: https://doi.org/10.3390/fractalfract7080595
CUI, M.; GAO, X. S.; LI, X.; MA, M.; QI, X.; SHIBAMOTO, Y. Variability of α/β ratios for prostate cancer with the fractionation schedule: caution against using the linear-quadratic model for hypofractionated radiotherapy. Radiat Oncol. 2022 Mar 18;17(1). DOI: https://doi.org/10.1186/s13014-022-02010-9
LEA, D. E.; CATCHESIDE, D. G. The mechanism of the induction by radiation of chromosome aberrations inTradescantia. J Genet [Internet]. 1943 Dec 44(2-3):216-45. DOI: https://doi.org/10.1007/BF02982830
SINCLAIR, W. K. Biophysical Aspects of Radiation Quality. International Atomic Energy Agency; Vienna, Austria: 1966. The shape of radiation survival curves of mammalian cells cultured in vitro. [Google Scholar]
LYON, M. F.; PHILLIPS, R. J.; FISHER, G. Dose-response curves for radiation-induced gene mutations in mouse oocytes and their interpretation. Mutat Res. 1979 Nov;63(1):161-73. DOI: https://doi.org/10.1016/0027-5107(79)90113-1
MCMAHON, S. J. The linear quadratic model: usage, interpretation and challenges. IOPscience. 2018 Dec. Institute of Physics and Engineering in Medicine. Available from: https://iopscience.iop.org/article/10.1088/1361-6560/aaf26a. DOI: https://doi.org/10.1088/1361-6560/aaf26a
O'SHEA, K.; COLEMAN, L.; FAHY, L.; KLEEFELD, C.; FOLEY, M. J.; MOORE, M. Compensation for radiotherapy treatment interruptions due to a cyberattack: An isoeffective DVH‐based dose compensation decision tool. J Appl Clin Med Phys. 2022 Jul 22. DOI: https://doi.org/10.1002/acm2.13716
SANTOS, M. M. Probabilidade de controle tumoral: modelos e estatísticas [Internet]: Universidade de São Paulo; 2014 [citado 15 maio 2024]. Avalilable from: http://www.teses.usp.br/teses/disponiveis/59/59135/tde-05012015-160705/.
van Leeuwen, C.M., Oei, A.L., Crezee, J. et al. The alfa and beta of tumours: a review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies. Radiat Oncol 13, 96 (2018). https://doi.org/10.1186/s13014-018-1040-z DOI: https://doi.org/10.1186/s13014-018-1040-z
QI, X. S.; WHITE, J.; LI, X. A. Is α/β for breast cancer really low? Radiother Oncol. 2011 Aug;100(2):282-8. DOI: https://doi.org/10.1016/j.radonc.2011.01.010
WANG, J. Z.; LI, X. A. Impact of tumor repopulation on radiotherapy planning. Int J Radiat Oncol Biol Phys. 2005 Jan 1;61(1):220-7. DOI: https://doi.org/10.1016/j.ijrobp.2004.09.043
The Royal College of Radiologists. Radiology dose fractionation, third edition. London: The RoyalCollege of Radiologist, 2019.
HAUSSMANN, J.; CORRADINI, S.; NESTLE-KRAEMLING, C.; BÖLKE, E.; NJANANG, F. J. D.; TAMASKOVICS, B.; ORTH, K.; RUCKHAEBERLE, E.; FEHM, T.; MOHRMANN, S.; SIMIANTONAKIS, I.; BUDACH, W.; MATUSCHEK, C. Recent advances in radiotherapy of breast cancer. Radiat Oncol. 2020 Mar 30;15(1):71. DOI: https://doi.org/10.1186/s13014-020-01501-x
HENNEQUIN, C.; BELKACÉMI, Y.; BOURGIER, C.; COWEN, D.; CUTULI, B.; FOURQUET, A.; HANNOUN-LÉVI, J. M.; PASQUIER, D.; RACADOT, S.; RIVERA, S. Radiotherapy of breast cancer. Cancer Radiother. 2022 Fev;26(1-2):221-30. DOI: https://doi.org/10.1016/j.canrad.2021.11.013
GONG, J; DOS SANTOS, M. M.; FINLAY, C.; HILLEN, T. Are more complicated tumour control probability models better? Math Med Biol. 2013 Mar;30(1):1-19. DOI: https://doi.org/10.1093/imammb/dqr023
HE, R.; DUGGAR, W. N.; YANG, C. C; VIJAYAKUMAR, S. Model development of dose and volume predictors for esophagitis induced during chemoradiotherapy for lung cancer as a step towards radiobiological treatment planning. BMC Pulm Med. 2023 Oct 9;23(1). DOI: https://doi.org/10.1186/s12890-023-02667-2
LIU, F.; VERVERS, J. D.; FARRIS, M. K.; BLACKSTOCK, A. W. JR.; MUNLEY, M. T. Optimal Radiation Therapy Fractionation Regimens for Early-Stage Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys. 2024 Mar 1;118(3):829-838. DOI: https://doi.org/10.1016/j.ijrobp.2023.09.017
COOPER, GM. The Cell: A Molecular Approach. 2nd Edition. National Library of Medicine. 2000. Available in: https://www.ncbi.nlm.nih.gov/books/NBK9963/.
Joiner M, Van der Kogel A, editores. Basic clinical radiobiology. 4th ed. London: Hodder Arnold; 2009. p.50. DOI: https://doi.org/10.1201/b15450
Published
Issue
Section
License
Copyright (c) 2024 Brazilian Journal of Radiation Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/