On neutron generator applications in Brazil: current panorama and perspectives

Authors

  • José Alípio dos Santos Filho Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN)
  • E. S. Fonseca Instituto de Radioproteção e Dosimetria (IRD)
  • C. M. Dias Comissão Nacional de Energia Nuclear (CNEN, DF)
  • C. Salata Comissão Nacional de Energia Nuclear (CNEN, RJ)
  • E. S. Santini Comissão Nacional de Energia Nuclear (CNEN, RJ) / Centro Brasileiro de Pesquisas Físicas (CBPF)
  • Marco Aurélio de Sousa Lacerda Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN)

DOI:

https://doi.org/10.15392/2319-0612.2024.2491

Keywords:

Neutron generator, neutron activation analysis, prompt gamma neutron activation analysis, neutron sources, neutron source applications

Abstract

Techniques based on neutron beams are used in research, industry and medicine being especially suitable for the characterization of a wide variety of materials. Neutron radiation can be produced using nuclear reactors, isotopic sources, or particle accelerators. Since the number of reactors is in decline and isotopic sources are expensive and difficult to handle, neutron generator (NG) technology has experienced significant development. Neutron generators are safer than nuclear reactors and isotopic sources, and the use of NGs is increasing worldwide, including in Brazil. This article reviews the main applications of neutron radiation, neutron production techniques, and specifically the technologies used in neutron generators. An overview of the utilization of these techniques in Brazil is presented, along with studies on acquisition and start-up costs of neutron-generating equipment and perspectives for future utilization in various areas. 

Downloads

Download data is not yet available.

Author Biography

  • Marco Aurélio de Sousa Lacerda, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN)
    Possui graduação em Engenharia Civil pela Universidade Federal de Ouro Preto (UFOP-1999), mestrado em Ciências e Técnicas Nucleares pela Universidade Federal de Minas Gerais (UFMG-2002) e doutorado em Tecnologias Energéticas e Nucleares pela Universidade Federal de Pernambuco (UFPE-2007). Atualmente é Pesquisador Titular do Centro de Desenvolvimento da Tecnologia Nuclear da Comissão Nacional de Energia Nuclear (CDTN/CNEN). Desenvolve pesquisas na área de Física Médica e Engenharia Nuclear com ênfase nos seguintes temas: Metrologia das Radiações, Método de Monte Carlo aplicado à Dosimetria das Radiações Ionizantes, Radioproteção.

References

CHADWICK, J. The existence of a neutron. Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character v.136, p.692-708, 1932. DOI: https://doi.org/10.1098/rspa.1932.0112

ANDERSON, I. S., ANDREANI, C., CARPENTER, J. M., FESTA, G., GORINI, G., LOONG, C. K., SENESI, R., 2016. Research opportunities with compact accelerator-driven neutron sources. Phys. Rep. v.654, p.1-58, 2016. DOI: https://doi.org/10.1016/j.physrep.2016.07.007

VALKOVIĆ, V. 14 MeV neutrons: physics and applications. CRC Press/Taylor & Francis Group, Boca Raton, FL, 2016.

IAEA. International Atomic Energy Agency. Neutron generators for analytical purposes, IAEA radiation technology reports. IAEA, Vienna, 2012.

TSOULFANIDIS, N., LANDSBERGER, S. Measurement & detection of radiation, 4th edition. ed. CRC Press, Taylor & Francis Group, Boca Raton, 2015. DOI: https://doi.org/10.1201/b18203

ISO. International Organization for Standardization, Reference neutron radiations–Part 1: Characteristics and methods of production, ISO 8529-1:2021. Geneva, Switzerland, 2021.

ISO. International Organization for Standardization, Reference radiation fields - Simulated workplace neutron fields - Part 1: Characteristics and methods of production, ISO 12789-1:2008. Geneva, Switzerland, 2008.

HAMM, R.W., HAMM, M.E. (Eds.). Industrial accelerators and their applications. World Scientific, Singapore, 2012. DOI: https://doi.org/10.1142/7745

IM, H.-J., SONG, K. Applications of Prompt Gamma Ray Neutron Activation Analysis: Detection of Illicit Materials. Appl. Spectrosc. Rev. v.44, p.317–334, 2009. DOI: https://doi.org/10.1080/05704920902852125

BUFFLER, A. Contraband detection with fast neutrons. Radiat. Phys. Chem. v.71, p.853-861, 2004. DOI: https://doi.org/10.1016/j.radphyschem.2004.04.110

IAEA. International Atomic Energy Agency. Commercial products and services of research reactors: proceedings of a technical meeting held in Vienna, IAEA TECDOC-1715, Vienna, 2013.

IAEA. International Atomic Energy Agency. Considerations of Safety and Utilization of Subcritical Assemblies, IAEA TECDOC-1976, Vienna, 2021.

PEREIRA, M.A.S. Imageamento com nêutrons: 30 anos de atividades no IPEN-CNEN/SP. Editora Sagitário, São Paulo, 2017.

PARISH, T. A., DAVIDSON, J. W. Reduction in the Toxicity of Fission Product Wastes through Transmutation with Deuterium-Tritium Fusion Neutrons. Nucl. Technol. v.47, p.324-342, 1980. DOI: https://doi.org/10.13182/NT80-A32436

KIYANAGI, Y. Neutron applications developing at compact accelerator-driven neutron sources. AAPPS Bull. v.31, 22, 2021. DOI: https://doi.org/10.1007/s43673-021-00022-3

SHOPE, L. A., BERG, R. S., O’NEAL, M. L., BARNABY, B. E. Operation and Life of the Zetatron: A Small Neutron Generator for Borehole Logging. IEEE Trans. Nucl. Sci. v.28, p.1696-1699, 1981. DOI: https://doi.org/10.1109/TNS.1981.4331501

YOSHIKAWA, K., MASUDA, K., et al. Development of a High-performance Landmine Detection System Through Gamma-ray Detection by Using a Compact Fusion Neutron Source and Dual-sensors, in: Furuta, K., Ishikawa, J. (Eds.), Anti-Personnel Landmine Detection for Humanitarian Demining. Springer London, London, p. 157-173, 2009. DOI: https://doi.org/10.1007/978-1-84882-346-4_10

BURKHART, R. Neutron Generators and Well Logging. Sandia National Lab. (SNL-NM), Albuquerque, NM, United States, 2006.

MICELI, A., FESTA, G., GORINI, G., SENESI, R., ANDREANI, C. Pulsed neutron gamma-ray logging in archaeological site survey. Meas. Sci. Technol. v.24, 125903, 2013. DOI: https://doi.org/10.1088/0957-0233/24/12/125903

THERMOFISHER SCIENTIFIC. PGNAA and PFTNA technology for non-scientists. PGNAA PFTNA Technol. Non-Sci, 2024. URL https://assets.thermofisher.com/TFS-Assets/CAD/Scientific-Resources/pgnaa-pftna-technology-ebook.pdf (accessed 3.13.24).

CHICHESTER, D. L., 2012. Production and applications of neutrons using particle accelerators. In: Industrial Accelerators and Their Applications. World Ccientific, p. 243-305. DOI: https://doi.org/10.1142/9789814307055_0007

KAPLANOĞLU, M. T. A simulation for detecting anti personnel landmines with 14 MeV neutron source. Fen Bilimleri Enstitüsü, 2018.

SOWERS, D., LIU, Y., MOSTAFAEI, F., BLAKE, S., NIE, L. H. A Dosimetry Study of Deuterium-Deuterium Neutron Generator-based In Vivo Neutron Activation Analysis. Health Phys. v.109, p.566-572, 2015. DOI: https://doi.org/10.1097/HP.0000000000000345

REIJONEN, J. Compact Neutron Generators for Medical, Home Land Security, and Planetary Exploration, in: Proceedings of the 2005 Particle Accelerator Conference. Presented at the 2005 IEEE Particle Accelerator Conference: Knoxville, TN, May 16 - 20, 2005, IEEE Operations Center, Piscataway, NJ, pp. 49–53, 2005. DOI: https://doi.org/10.1109/PAC.2005.1590356

SIQUEIRA, P. T. D., YORIYAZ, Y., SHORTO, J. M. B., CAVALIERI, T. Princípios e Aplicações da Terapia por Captura de Nêutrons por Boro. Rev. Bras. Física Médica v.13, 116-121, 2019. DOI: https://doi.org/10.29384/rbfm.2019.v13.n1.p116-121

IAEA. International Atomic Energy Agency. Compact Accelerator Based Neutron Sources. IAEA TECDOC-1981, Vienna, 2021.

KASESAZ, Y., KARIMI, M. A novel design of beam shaping assembly to use D-T neutron generator for BNCT. Appl. Radiat. Isot. v.118, p.317-325, 2016. DOI: https://doi.org/10.1016/j.apradiso.2016.09.029

KOAY, H. W., FUKUDA, M., TOKI, H., SEKI, R., KANDA, H., YORITA, T. Feasibility study of compact accelerator-based neutron generator for multi-port BNCT system. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. v.899, p.65-72, 2018. DOI: https://doi.org/10.1016/j.nima.2018.05.025

OTT, F., MENELLE, A., ALBA-SIMIONESCO, C. The SONATE project, a French CANS for Materials Sciences Research. EPJ Web Conf. v.231, 01004, 2020. DOI: https://doi.org/10.1051/epjconf/202023101004

MARTIN, R. C., KNAUER, J. B., BALO, P. A. Production, distribution and applications of californium-252 neutron sources. Appl. Radiat. Isot. v.53, p.785-792, 2000. DOI: https://doi.org/10.1016/S0969-8043(00)00214-1

ELIZONDO-DECANINI, J. M., SCHMALE, D., CICH, M. et al. Novel Surface-Mounted Neutron Generator. IEEE Trans. Plasma Sci. v.40, p.2145-2150, 2012. DOI: https://doi.org/10.1109/TPS.2012.2204278

HUANG, Z., WANG, J., MA, Z. et al. Design of a compact D–D neutron generator. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. v.904, p.107-112, 2018. DOI: https://doi.org/10.1016/j.nima.2018.07.005

IAEA. International Atomic Energy Agency. Manual for troubleshooting and upgrading of neutron generators. IAEA-TECDOC-913, Vienna, 1996. DOI: https://doi.org/10.1163/9789004636750_044

JESSEN, P. L. Design Considerations for Low Voltage Accelerators, Kaman Nuclear, 1968.

VAINIONPAA, J. H., GARY, C. K., HARRIS, J. L., PIESTRUP, M. A., PANTELL, R. H., JONES, G. Technology and Applications of Neutron Generators Developed by Adelphi Technology, Inc. Phys. Procedia v.60, p.203-211, 2014. DOI: https://doi.org/10.1016/j.phpro.2014.11.029

SNIC. Sindicato Nacional da Indústria do Cimento. Parque produtor de cimento. 2024. [WWW Document]. URL http://snic.org.br/numeros-do-setor.php (accessed 3.18.24).

Instituto Aço Brasil. Pocket yearbook: Indústria do aço em números, 2023. Rio de Janeiro, 2023

CNI. Confederação Nacional da Indústria. Perfil Setorial da Indústria Brasileira, 2024. [WWW Document]. URL https://perfilsetorialdaindustria.portaldaindustria.com.br/ (accessed 3.18.24)

CNEN. Comissão Nacional de Energia Nuclear. Requisitos de Segurança e Proteção Radiológica para Perfilagem de Poços. Norma CNEN NN 6.07, Rio de Janeiro, 2019.

ANP. Agência Nacional de Petróleo, Gás Natural e Biocombustíveis. Boletim da Produção de Petróleo e Gás Natural, 2024. [WWW Document]. URL https://perfilsetorialdaindustria.portaldaindustria.com.br/ (accessed 3.18.24).

IEAV, I. de E.A. Laboratórios Instituto de Estudos Avançados, 2023. [WWW Document]. URL https://ieav.dcta.mil.br/images/pdf/Laboratorios_do_IEAv_Fev_2023.pdf (accessed 3.14.24).

IRD. Instituto de Radioproteção e Dosimetria. Apresentação do Laboratório de Metrologia de Nêutrons (LN), 2024. [WWW Document]. URL https://www.gov.br/ird/pt-br/assuntos/areas-de-atuacao/metrologia/metrologia-de-neutrons-1/apresentacao (accessed 3.18.24).

ALVARENGA, T. S. Estabelecimento e caracterização de um laboratório de calibração com campos neutrônicos de referência com rastreabilidade ao sistema metrológico internacional (Tese de doutorado). Universidade de São Paulo, São Paulo, 2018.

MORERO, L. D., PEREIRA, W. W., BORGES, J. C., NICOLUCCI, P. Simulation of a new neutron calibration laboratory in Brazil using MCNP5. Appl. Radiat. Isot. v.186, 110289, 2022. DOI: https://doi.org/10.1016/j.apradiso.2022.110289

Downloads

Published

2024-09-25

Issue

Section

Review Articles

How to Cite

On neutron generator applications in Brazil: current panorama and perspectives. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 3, p. e2491, 2024. DOI: 10.15392/2319-0612.2024.2491. Disponível em: https://www.bjrs.org.br/revista/index.php/REVISTA/article/view/2491. Acesso em: 2 may. 2025.