On neutron generator applications in Brazil: current panorama and perspectives
DOI:
https://doi.org/10.15392/2319-0612.2024.2491Keywords:
Neutron generator, neutron activation analysis, prompt gamma neutron activation analysis, neutron sources, neutron source applicationsAbstract
Techniques based on neutron beams are used in research, industry and medicine being especially suitable for the characterization of a wide variety of materials. Neutron radiation can be produced using nuclear reactors, isotopic sources, or particle accelerators. Since the number of reactors is in decline and isotopic sources are expensive and difficult to handle, neutron generator (NG) technology has experienced significant development. Neutron generators are safer than nuclear reactors and isotopic sources, and the use of NGs is increasing worldwide, including in Brazil. This article reviews the main applications of neutron radiation, neutron production techniques, and specifically the technologies used in neutron generators. An overview of the utilization of these techniques in Brazil is presented, along with studies on acquisition and start-up costs of neutron-generating equipment and perspectives for future utilization in various areas.
Downloads
References
CHADWICK, J. The existence of a neutron. Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character v.136, p.692-708, 1932. DOI: https://doi.org/10.1098/rspa.1932.0112
ANDERSON, I. S., ANDREANI, C., CARPENTER, J. M., FESTA, G., GORINI, G., LOONG, C. K., SENESI, R., 2016. Research opportunities with compact accelerator-driven neutron sources. Phys. Rep. v.654, p.1-58, 2016. DOI: https://doi.org/10.1016/j.physrep.2016.07.007
VALKOVIĆ, V. 14 MeV neutrons: physics and applications. CRC Press/Taylor & Francis Group, Boca Raton, FL, 2016.
IAEA. International Atomic Energy Agency. Neutron generators for analytical purposes, IAEA radiation technology reports. IAEA, Vienna, 2012.
TSOULFANIDIS, N., LANDSBERGER, S. Measurement & detection of radiation, 4th edition. ed. CRC Press, Taylor & Francis Group, Boca Raton, 2015. DOI: https://doi.org/10.1201/b18203
ISO. International Organization for Standardization, Reference neutron radiations–Part 1: Characteristics and methods of production, ISO 8529-1:2021. Geneva, Switzerland, 2021.
ISO. International Organization for Standardization, Reference radiation fields - Simulated workplace neutron fields - Part 1: Characteristics and methods of production, ISO 12789-1:2008. Geneva, Switzerland, 2008.
HAMM, R.W., HAMM, M.E. (Eds.). Industrial accelerators and their applications. World Scientific, Singapore, 2012. DOI: https://doi.org/10.1142/7745
IM, H.-J., SONG, K. Applications of Prompt Gamma Ray Neutron Activation Analysis: Detection of Illicit Materials. Appl. Spectrosc. Rev. v.44, p.317–334, 2009. DOI: https://doi.org/10.1080/05704920902852125
BUFFLER, A. Contraband detection with fast neutrons. Radiat. Phys. Chem. v.71, p.853-861, 2004. DOI: https://doi.org/10.1016/j.radphyschem.2004.04.110
IAEA. International Atomic Energy Agency. Commercial products and services of research reactors: proceedings of a technical meeting held in Vienna, IAEA TECDOC-1715, Vienna, 2013.
IAEA. International Atomic Energy Agency. Considerations of Safety and Utilization of Subcritical Assemblies, IAEA TECDOC-1976, Vienna, 2021.
PEREIRA, M.A.S. Imageamento com nêutrons: 30 anos de atividades no IPEN-CNEN/SP. Editora Sagitário, São Paulo, 2017.
PARISH, T. A., DAVIDSON, J. W. Reduction in the Toxicity of Fission Product Wastes through Transmutation with Deuterium-Tritium Fusion Neutrons. Nucl. Technol. v.47, p.324-342, 1980. DOI: https://doi.org/10.13182/NT80-A32436
KIYANAGI, Y. Neutron applications developing at compact accelerator-driven neutron sources. AAPPS Bull. v.31, 22, 2021. DOI: https://doi.org/10.1007/s43673-021-00022-3
SHOPE, L. A., BERG, R. S., O’NEAL, M. L., BARNABY, B. E. Operation and Life of the Zetatron: A Small Neutron Generator for Borehole Logging. IEEE Trans. Nucl. Sci. v.28, p.1696-1699, 1981. DOI: https://doi.org/10.1109/TNS.1981.4331501
YOSHIKAWA, K., MASUDA, K., et al. Development of a High-performance Landmine Detection System Through Gamma-ray Detection by Using a Compact Fusion Neutron Source and Dual-sensors, in: Furuta, K., Ishikawa, J. (Eds.), Anti-Personnel Landmine Detection for Humanitarian Demining. Springer London, London, p. 157-173, 2009. DOI: https://doi.org/10.1007/978-1-84882-346-4_10
BURKHART, R. Neutron Generators and Well Logging. Sandia National Lab. (SNL-NM), Albuquerque, NM, United States, 2006.
MICELI, A., FESTA, G., GORINI, G., SENESI, R., ANDREANI, C. Pulsed neutron gamma-ray logging in archaeological site survey. Meas. Sci. Technol. v.24, 125903, 2013. DOI: https://doi.org/10.1088/0957-0233/24/12/125903
THERMOFISHER SCIENTIFIC. PGNAA and PFTNA technology for non-scientists. PGNAA PFTNA Technol. Non-Sci, 2024. URL https://assets.thermofisher.com/TFS-Assets/CAD/Scientific-Resources/pgnaa-pftna-technology-ebook.pdf (accessed 3.13.24).
CHICHESTER, D. L., 2012. Production and applications of neutrons using particle accelerators. In: Industrial Accelerators and Their Applications. World Ccientific, p. 243-305. DOI: https://doi.org/10.1142/9789814307055_0007
KAPLANOĞLU, M. T. A simulation for detecting anti personnel landmines with 14 MeV neutron source. Fen Bilimleri Enstitüsü, 2018.
SOWERS, D., LIU, Y., MOSTAFAEI, F., BLAKE, S., NIE, L. H. A Dosimetry Study of Deuterium-Deuterium Neutron Generator-based In Vivo Neutron Activation Analysis. Health Phys. v.109, p.566-572, 2015. DOI: https://doi.org/10.1097/HP.0000000000000345
REIJONEN, J. Compact Neutron Generators for Medical, Home Land Security, and Planetary Exploration, in: Proceedings of the 2005 Particle Accelerator Conference. Presented at the 2005 IEEE Particle Accelerator Conference: Knoxville, TN, May 16 - 20, 2005, IEEE Operations Center, Piscataway, NJ, pp. 49–53, 2005. DOI: https://doi.org/10.1109/PAC.2005.1590356
SIQUEIRA, P. T. D., YORIYAZ, Y., SHORTO, J. M. B., CAVALIERI, T. Princípios e Aplicações da Terapia por Captura de Nêutrons por Boro. Rev. Bras. Física Médica v.13, 116-121, 2019. DOI: https://doi.org/10.29384/rbfm.2019.v13.n1.p116-121
IAEA. International Atomic Energy Agency. Compact Accelerator Based Neutron Sources. IAEA TECDOC-1981, Vienna, 2021.
KASESAZ, Y., KARIMI, M. A novel design of beam shaping assembly to use D-T neutron generator for BNCT. Appl. Radiat. Isot. v.118, p.317-325, 2016. DOI: https://doi.org/10.1016/j.apradiso.2016.09.029
KOAY, H. W., FUKUDA, M., TOKI, H., SEKI, R., KANDA, H., YORITA, T. Feasibility study of compact accelerator-based neutron generator for multi-port BNCT system. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. v.899, p.65-72, 2018. DOI: https://doi.org/10.1016/j.nima.2018.05.025
OTT, F., MENELLE, A., ALBA-SIMIONESCO, C. The SONATE project, a French CANS for Materials Sciences Research. EPJ Web Conf. v.231, 01004, 2020. DOI: https://doi.org/10.1051/epjconf/202023101004
MARTIN, R. C., KNAUER, J. B., BALO, P. A. Production, distribution and applications of californium-252 neutron sources. Appl. Radiat. Isot. v.53, p.785-792, 2000. DOI: https://doi.org/10.1016/S0969-8043(00)00214-1
ELIZONDO-DECANINI, J. M., SCHMALE, D., CICH, M. et al. Novel Surface-Mounted Neutron Generator. IEEE Trans. Plasma Sci. v.40, p.2145-2150, 2012. DOI: https://doi.org/10.1109/TPS.2012.2204278
HUANG, Z., WANG, J., MA, Z. et al. Design of a compact D–D neutron generator. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. v.904, p.107-112, 2018. DOI: https://doi.org/10.1016/j.nima.2018.07.005
IAEA. International Atomic Energy Agency. Manual for troubleshooting and upgrading of neutron generators. IAEA-TECDOC-913, Vienna, 1996. DOI: https://doi.org/10.1163/9789004636750_044
JESSEN, P. L. Design Considerations for Low Voltage Accelerators, Kaman Nuclear, 1968.
VAINIONPAA, J. H., GARY, C. K., HARRIS, J. L., PIESTRUP, M. A., PANTELL, R. H., JONES, G. Technology and Applications of Neutron Generators Developed by Adelphi Technology, Inc. Phys. Procedia v.60, p.203-211, 2014. DOI: https://doi.org/10.1016/j.phpro.2014.11.029
SNIC. Sindicato Nacional da Indústria do Cimento. Parque produtor de cimento. 2024. [WWW Document]. URL http://snic.org.br/numeros-do-setor.php (accessed 3.18.24).
Instituto Aço Brasil. Pocket yearbook: Indústria do aço em números, 2023. Rio de Janeiro, 2023
CNI. Confederação Nacional da Indústria. Perfil Setorial da Indústria Brasileira, 2024. [WWW Document]. URL https://perfilsetorialdaindustria.portaldaindustria.com.br/ (accessed 3.18.24)
CNEN. Comissão Nacional de Energia Nuclear. Requisitos de Segurança e Proteção Radiológica para Perfilagem de Poços. Norma CNEN NN 6.07, Rio de Janeiro, 2019.
ANP. Agência Nacional de Petróleo, Gás Natural e Biocombustíveis. Boletim da Produção de Petróleo e Gás Natural, 2024. [WWW Document]. URL https://perfilsetorialdaindustria.portaldaindustria.com.br/ (accessed 3.18.24).
IEAV, I. de E.A. Laboratórios Instituto de Estudos Avançados, 2023. [WWW Document]. URL https://ieav.dcta.mil.br/images/pdf/Laboratorios_do_IEAv_Fev_2023.pdf (accessed 3.14.24).
IRD. Instituto de Radioproteção e Dosimetria. Apresentação do Laboratório de Metrologia de Nêutrons (LN), 2024. [WWW Document]. URL https://www.gov.br/ird/pt-br/assuntos/areas-de-atuacao/metrologia/metrologia-de-neutrons-1/apresentacao (accessed 3.18.24).
ALVARENGA, T. S. Estabelecimento e caracterização de um laboratório de calibração com campos neutrônicos de referência com rastreabilidade ao sistema metrológico internacional (Tese de doutorado). Universidade de São Paulo, São Paulo, 2018.
MORERO, L. D., PEREIRA, W. W., BORGES, J. C., NICOLUCCI, P. Simulation of a new neutron calibration laboratory in Brazil using MCNP5. Appl. Radiat. Isot. v.186, 110289, 2022. DOI: https://doi.org/10.1016/j.apradiso.2022.110289
Published
Issue
Section
License
Copyright (c) 2024 Brazilian Journal of Radiation Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/