Challenges in personal and clinical dosimetry using Li2B4O7 and MgB4O7 as TLD and OSLD

Authors

  • Leo Sousa Santiago de Oliveira
  • Luiza Freire de Souza
  • Gabriela Guimarães Donald
  • Malu Fernandes Serra D’Emidio
  • Andréa de Lima Ferreira Novais
  • Divanízia Souza

DOI:

https://doi.org/10.15392/bjrs.v10i2A.2019

Keywords:

clinical dosimetry, personal dosimetry, borate materials

Abstract

Thermoluminescent (TLD) and optically stimulated luminescent dosimeters (OSLD) are essential in radiation dosimetry. Such dosimeters can be easily transported due to their small size and can be used in in vivo dosimetry and anthropomorphic simulations. In this work, the dosimetric properties of Li2B4O7 and MgB4O7 compounds were evaluated based on their response to the applied stimulus, whether thermal or optical. The linear dose response range of the luminescent signal, its fading, the lowest detectable dose, and reproducibility are important parameters in determining a good dosimeter for clinical and personal dosimetry. Therefore, the objective of this work was, based on studies performed by other authors on dosimetric characterizations of doped a codoped Li2B4O7 and MgB4O7, to point out those compounds with the greatest potential for applications in personal and clinical dosimetry using TL and OSL techniques. Considering the results described in other works, the materials that stood out for use in personal and clinical dosimetry were Li2B4O7:Cu and MgB4O7:Dy,Na. In several of the reported studies, no data related to LDD, fading and reproducibility of the luminescent signal of the investigated compounds were found. Therefore, there are many possibilities for investigations into these two types of compounds for the purpose of their use in personal and clinical dosimetry. Further studies will provide a broader scientific basis for choosing appropriate dosimetric materials for these applications.

Downloads

Download data is not yet available.

References

OZDEMIR, A.; GUCKAN, V.; ALTUNAL, V.; KURT, K.;YEGINGIL, Z. Thermoluminescence in MgB4O7:Pr,Dy dosimetry powder synthesized by solution combustion synthesis method. J. Lumin. v. 230, 117761, 2021. DOI: https://doi.org/10.1016/j.jlumin.2020.117761

VILLANI, D.; MANCINI, A.; HADDAD, C. M. K.; CAMPOS, L. L. Comparative study of different Al2O3: C dosimeters using OSL technique for dosimetry on Volumetric Modulates Arc Radiotherapy Treatment VMAT. Rev. Bras. Fís. Méd. v. 10, 7, 2016. DOI: https://doi.org/10.29384/rbfm.2016.v10.n2.p7-11

BOTTER-JENSEN, L.; MCKEEVER, S. W. S.; WINTLE, A. G. Optically stimulated luminescence dosimetry. Elsevier, 2003. DOI: https://doi.org/10.1016/B978-044450684-9/50091-X

WINTLE, A. G. Luminescence dating: laboratory procedures and protocols. Radiat. Measur., v. 27, p. 769-817.1997. DOI: https://doi.org/10.1016/S1350-4487(97)00220-5

KITAGAWA, Y.; YUKIHARA, E. G.; TANABE, S. Development of Ce3+ and Li+ co-doped magnesium borate glass ceramics for optically stimulated luminescence dosimetry. J. Lumin. 232, 117847, 2021. DOI: https://doi.org/10.1016/j.jlumin.2020.117847

TIWARI, B.; RAWAT, N. S.; DESAI, D. G.; SINGH, S. G.; TYAGI, M.; RATNA, P.; KULKARNI, M. S. Thermoluminescence studies on Cu-doped Li2B4O7 single crystals. J. Lumin. v. 130, p. 2076–2083, 2010. DOI: https://doi.org/10.1016/j.jlumin.2010.05.030

LALIC, S. S.; SOUZA, D. N.; BAFFA, O.; d’ERRICO, F. Novos materiais dosimétricos para aplicações em física médica New dosimetric materials for applications in medical physics. Rev. Bras. Fís. Méd., v. 13, p. 24–33, 2019. DOI: https://doi.org/10.29384/rbfm.2019.v13.n1.p24-33

SINGH, L.; CHOPRA, V.; LOCHAB, S. P. Synthesis and characterization of thermoluminescent Li2B4O7 nanophosphor. J. Lumin. v. 131, p. 1177–1183, 2011. DOI: https://doi.org/10.1016/j.jlumin.2011.02.035

FERNANDES, A. C.; OSVAY, M.; SANTOS, J. P.; HOLOVEY, V.; IGNATOVYCH, M. TL properties of newly developed lithium tetraborate single crystals. Radiat. Meas. v. 43, p. 476–479, 2008. DOI: https://doi.org/10.1016/j.radmeas.2008.01.004

YUKIHARA, E. G.; Doull, B. A.; Gustafson, T.; Oliveira, L. C.; Kurt, K.; Milliken, E. D. Optically stimulated luminescence of MgB4O7:Ce,Li for gamma and neutron dosimetry. J. Lumin. v. 183, p. 525–532, 2017. DOI: https://doi.org/10.1016/j.jlumin.2016.12.001

FURETTA, C.; PROKIC, M.; SALAMON, R.; KITIS, G. Dosimetric characterisation of a new production of MgB4O7:Dy,Na thermoluminescent material. Appl. Radiat. Isot. v. 52, p. 243–250, 2000. DOI: https://doi.org/10.1016/S0969-8043(99)00124-4

SOUZA, L. F.; SOUZA, D. N.; RIVERA, G. B.; VIDAL, R. M.; CALDAS, L. V. E. Dosimetric characterization of MgB4O7:Ce,Li as an optically stimulated dosimeter for photon beam radiotherapy. Perspect. Sci. v. 12, p. 100397, 2019. DOI: https://doi.org/10.1016/j.pisc.2019.100397

MOREIRA, M. C. L.; SOUZA, S. O.; ALVES, M. C.; CARVALHO, A. B.; d’ERRICO, F. Monte Carlo simulations of PVC films loaded with microparticles of MgB4O7: to detect albedo neutrons. Radiat. Meas. v. 134, p. 106322, 2020. DOI: https://doi.org/10.1016/j.radmeas.2020.106322

YUKIHARA, E. G.; MILLIKEN, E. D.; DOULL, B. A. Thermally stimulated and recombination processes in MgB4O7 investigated by systematic lanthanide doping. J. Lumin. v. 154, p. 251–259 2014. DOI: https://doi.org/10.1016/j.jlumin.2014.04.038

SOUZA, L. F. NOLASCO, A.; BARRERA, G. R.; CAMPOS, W. R. C.; SOUZA, D. N.; NOGUEIRA, M. S. Evaluation of MgB4O7:Ce,Li and Ce-doped 80MgB2O4–20MgB4O7 as alternative OSL materials for use in quality assurance of 6 MV photon beams. Radiat. Phys. Chem. v. 182, p. 109355, 2021. DOI: https://doi.org/10.1016/j.radphyschem.2021.109355

GUSTAFSON, T. D.; MILLIKEN, E. D.; JACOBSOHN, L. G.; YUKIHARA, E. G. Progress and challenges towards the development of a new optically stimulated luminescence OSL material based on MgB4O7:Ce,Li. J. Lumin. v. 212, p. 242–249, 2019. DOI: https://doi.org/10.1016/j.jlumin.2019.04.028

PEKPAK, E.; YILMAZ, A.; OZBAYOGLU, G. An overview on preparation and TL characterization of lithium borates for dosimetric use. Open Miner. Proc.. J. v. 3, p. 14–24, 2010. DOI: https://doi.org/10.2174/1874841401003010014

OLIVEIRA, L. S. S.; SOUZA, L. F.; PEREIRA, W. B.; D'EMIDIO, M. F.; SOUZA, D. N.; NOGUEIRA, M. S. Cerium-doped lithium tetraborate for thermoluminescent dosimetry. Radiat. Phys. Chem. v. 177, p. 109127, 2020. DOI: https://doi.org/10.1016/j.radphyschem.2020.109127

OZDEMIR, A. Investigation of dosimetric properties of newly-developed Li2B4O7:Ag+,La3+ using thermoluminescence TL technique. J. Alloys Compd. v. 822, p. 153722, 2020. DOI: https://doi.org/10.1016/j.jallcom.2020.153722

PROKIC, M. Lithium borate solid TL detectors. Radiat. Meas. 33, 393–396 2001. DOI: https://doi.org/10.1016/S1350-4487(01)00039-7

KITIS, G.; POLYMERIS, G. S.; SFAMPA, I. K.; PROKIC, M.; MERIC, N.; PAGONIS, V. Prompt isothermal decay of thermoluminescence in MgB4O7:Dy,Na and Li2B4O7:Cu, in dosimeters. Radiat. Meas. v. 84, p. 15–25, 2016. DOI: https://doi.org/10.1016/j.radmeas.2015.11.002

RAMMADHAN, I.; TAHA, S.; WAGIRAN, H. Thermoluminescence characteristics of Cu2O doped Calcium Lithium borate glass irradiated with the cobalt-60 gamma rays. J. Lumin. v. 186, p. 117–122, 2017. DOI: https://doi.org/10.1016/j.jlumin.2017.02.026

CHOPRA, V.; SINGH, L.; LOCHAB, S. P.; ALEYNIKOV, V. E.; OINAM, A. S. TL dosimetry of nanocrystalline Li2B4O7:Cu exposed to 150 MeV proton, 4 MeV and 9 MeV electron beam. Radiat. Phys. Chem. v. 102, p. 5–10, 2014. DOI: https://doi.org/10.1016/j.radphyschem.2014.04.005

OZDEMIR, A.; ALTUNAL, V.; GUCKAN, V.;CAN, N.; KURT, K.; YEGINGIL, I.; YEGINGIL, Z. Characterization and some fundamental features of Optically Stimulated Luminescence measurements of silver activated lithium tetraborate. J. Lumin. v. 202, p. 136–146, 2018. DOI: https://doi.org/10.1016/j.jlumin.2018.05.054

PALAN, C. B.; BAJAJ, N. S.; OMANWAR, S. K. Luminescence properties of Eu2+ doped SrB4O7 phosphor for radiation dosimetry. Mater. Res. Bull. v. 76, p. 216–221, 2016. DOI: https://doi.org/10.1016/j.materresbull.2015.12.027

YAZICI, A. N.; DOG ̌AN, M.; KAFADAR, V. E.; TOKTAMIŞ, H. Thermoluminescence of undoped and Ce-doped BaB4O7. Nucl. Instr. Meth.s Phys. Res.. B, v. 246, p. 402–408, 2006. DOI: https://doi.org/10.1016/j.nimb.2005.12.052

HAGHIRI, E. M. SAION, E.; SOLTANI, N.; WAN ABDULLAH, W. S.; NAVASERY, M.; HASHIM, M. Thermoluminescence characteristics of copper activated calcium borate nanocrystals CaB4O7:Cu. J. Lumin. v. 141, p. 177–183, 2013. DOI: https://doi.org/10.1016/j.jlumin.2013.03.039

HEMAM, R.; SINGH, L. R.; SINGH, S. D.; SHARAN, R. N. Preparation of CaB4O7 nanoparticles doped with different concentrations of Tb3+: Photoluminescence and thermoluminescence/optically stimulated luminescence study. J. Lumin. v. 197, p. 399–405, 2018. DOI: https://doi.org/10.1016/j.jlumin.2018.01.062

MISHRA, G. C.; UPADHYAY, A. K.; KHER, R. S.; DHOBLE, S. J. Thermoluminescence and mechanoluminescence of gamma-ray-irradiated SrB4O7:Dy phosphors. Micro Nano Lett. v. 6, p. 978–981, 2011. DOI: https://doi.org/10.1049/mnl.2011.0441

SANTIAGO, M.; GRASSELI, C.; CASELLI, E.; LESTER, M.; LAVAT, A.; SPANO, F. Thermoluminescence of SrB4O7:Dy. Phys. Status Solidi v. 6, p. 285-289, 2001. DOI: https://doi.org/10.1002/1521-396X(200106)185:2<285::AID-PSSA285>3.0.CO;2-9

TEKIN, E.; EGE, A.; KARALI, T.; TOWNSEND, P. D.; PROKIĆ, M. Thermoluminescence studies of thermally treated Ca B4O7:Dy. Radiat. Meas. v. 45, p. 764–767, 2010. DOI: https://doi.org/10.1016/j.radmeas.2010.04.009

PALAN, C. B.; KOPARKAR, K. A.; BAJAJ, N. S.; SONI, A.; OMANWAR, S. K. Synthesis and thermoluminescence/optically stimulated luminescence properties of CaB4O7:Ce phosphor. J. Mater. Sci. Mater. Electron. v. 27, p. 5600–5606, 2016. DOI: https://doi.org/10.1007/s10854-016-4465-x

CANO, A.; GONZÁLEZ, P. R.; FURETTA, C. MgB4O7:Dy,Na. Mod. Phys. Lett. B, v. 22, p. 10, 2008. DOI: https://doi.org/10.1142/S0217984908016674

Bahl, S.; PANDEY, A.; LOCHAB, S. P.; ALEYNIKOV, V. E.; MOLOKANOV, A. G.; KUMAR, P. Synthesis and thermoluminescence characteristics of gamma and proton irradiated nanocrystalline MgB4O7: Dy,Na. J. Lumin. v. 134, p. 691–698, 2013. DOI: https://doi.org/10.1016/j.jlumin.2012.07.008

SHRESTHA, N.; VANDENBROUCKE, D.; LEBLANS, P.; YUKIHARA, E. G. Feasibility studies on the use of MgB4O7:Ce,Li-based films in 2D optically stimulated luminescence dosimetry. Phys. Open, v. 5, p. 100037, 2020. DOI: https://doi.org/10.1016/j.physo.2020.100037

SAHARE, P. D.; SINGH, M.; KUMAR, P. Synthesis and TL characteristics of MgB4O7:Mn,Tb phosphor. J. Lumin. v. 160; 158–164; 2015. DOI: https://doi.org/10.1016/j.jlumin.2014.11.042

PROKIĆ, M. Individual monitoring based on magnesium borate. Radiat. Prot. Dosim. v. 125, p. 247–250, 2007. DOI: https://doi.org/10.1093/rpd/ncl116

SOUZA, L. F. SILVA, A. M. B.; ANTONIO, P. L.; CALDAS, L. V. E.; SOUZA, S. O.; D’ERRICO, F.; SOUZA, D. N. Dosimetric properties of MgB4O7:Dy,Li and MgB4O7:Ce,Li for optically stimulated luminescence applications. Radiat. Meas. v. 106, p. 196–199, 2017. DOI: https://doi.org/10.1016/j.radmeas.2017.02.009

LEGORRETA-ALBA, O.; CRUZ-ZARAGOZA, E.; DÍAZ, D.; MARCAZZÓ, J. Synthesis of MgB4O7:Dy3+ and Thermoluminescent Characteristics at Low Doses of Beta Radiation. J. Nucl. Physics, Mater. Sci. Radiat. Appl. v. 6, p. 71–76, 2018. DOI: https://doi.org/10.15415/jnp.2018.61012

RAO, M. R.; RAO, B. S.; RAO, N. P.; SOMAIAH, K.; MURTHY, K. V. R. MgB4O7/MgB4O7:Mn/ MgB4O7: Cu. Indian J. Pure Appl. Phys. v. 47, p. 456–458, 2009.

BAKHSH, M.; WAN ABDULLAH, W. S.; MUSTAFA, I. S.; AL MUSAWI, M. S. A.; RAZALI, N. A. N. Synthesis, characterisation and dosimetric evaluation of MgB4O7 glass as thermoluminescent dosimeter. Radiat. Eff. Def. Solids, v. 173, p. 446–460, 2018. DOI: https://doi.org/10.1080/10420150.2018.1471080

DOGAN, M.; YAZICI, A. N. Thermoluminescence properties of Li 2 B 4 O 7 : Cu material. J. Optoelectron. Addvanced Mater. 11, 1783–1787 2009.

KAWASHIMA, Y. S.; GUGLIOTTI, C. F.; YEE, M.; TATUMI, S. H.; MITTANI, J. C. R. Thermoluminescence features of MgB4O7:Tb phosphor. Radiat. Phys. Chem. 95, 91–93 2014. DOI: https://doi.org/10.1016/j.radphyschem.2012.12.033

ANNALAKSHMI, O.; JOSE, M. T.; MADHUSOODANAN, U.; VENKATRAMAN, B.; AMARENDRA, G. Synthesis and thermoluminescence characterization of Li2B4O7:Gd,Li. Radiat. Meas. v. 59, p. 15–22, 2013. DOI: https://doi.org/10.1016/j.radmeas.2013.10.001

LOCHAB, S. P.; PANDEY, A.; SAHARE, P. D.; CHAUHAN, R. S.; SALAH, N.; RANJAN, R. Nanocrystalline MgB4O7:Dy for high dose measurement of gamma radiation. Phys. Status Solidi Appl. Mater. Sci. v. 204, p. 2416–2425, 2007. DOI: https://doi.org/10.1002/pssa.200622487

SALAH, N.; HABIB, S.; BABKAIR, S. S.; LOCHAB, S. P.; CHOPRA, V. TL response of nanocrystalline MgB4O7:Dy irradiated by 3 MeV proton beam, 50 MeV Li3+ and 120 MeV Ag9+ ion beams. Radiat. Phys. Chem., v. 86, p. 52–58, 2013. DOI: https://doi.org/10.1016/j.radphyschem.2013.01.034

PALUCH-FERSZT, M.; KOZLOWSKA, B.; SOUZA, S. O.; SOUZA, L. F.; SOUZA, D. N. Analysis of dosimetric peaks of MgB4O7:Dy 40% Teflon versus LiF:Mg,Ti TL detectors. Nukleonika, v. 61, p. 49–52, 2016. DOI: https://doi.org/10.1515/nuka-2016-0011

EL-FARAMAWY, N. A.; EL-KAMEESY, S. U.; EL-AGRAMY, A.; METWALLY, G. The dosimetric properties of in-house prepared copper doped lithium borate examined using the TL-technique. Radiat. Phys. Chem. v. 58, p. 9–13, 2000. DOI: https://doi.org/10.1016/S0969-806X(99)00361-8

FURETTA, C.; PROKIC, M.; SALAMON, R.; PROKIC, V.; KITIS, G. Dosimetric characteristics of tissue equivalent thermoluminescent solid TL detectors based on lithium borate. Nucl. Instr. Meth. Phys. Res. A. v. 456, p. 411–417, 2001. DOI: https://doi.org/10.1016/S0168-9002(00)00585-4

Brant, A. T.; BUCHANAN, D. A.; MCCLORY, J. W.; DOWBEN, P. A.; ADAMIV, V. T.; BURAK, Y. V.; HALLIBURTON, L. E. EPR identification of defects responsible for thermoluminescence in Cu-doped lithium tetraborate Li2B4O7 crystals. J. Lumin. v. 139, p. 125–131, 2013. DOI: https://doi.org/10.1016/j.jlumin.2013.02.023

OLIVEIRA, T. M.; LIMA, A. F.; BRIK, M. G.; SOUZA, S. O.; LALIC, M. V. Electronic structure and optical properties of magnesium tetraborate: An ab initio study. Comput. Mater. Sci. v. 124, p. 1–7, 2016. DOI: https://doi.org/10.1016/j.commatsci.2016.07.007

Porwal, N. K. KADAM, R. M.; SESHAGIRI, T. K.; NATARAJAN, V.; DHOBALE, A. R.; PAGE, A. G. EPR and TSL studies on MgB4O7 doped with Tm: Role of BO32- in TSL glow peak at 470 K. Radiat. Meas. v. 40, p. 69–75, 2005. DOI: https://doi.org/10.1016/j.radmeas.2005.04.007

TORRES-CORTÉS, C. O.; HERNÁNDEZ-ADAME, L.; BALTAZAR-RAIGOSA, A., VEGA-CARRILLO; H. R., RODRÍGUEZ-LÓPEZ, J. L.; PÉREZ-ARRIETA, M. L. Synthesis and thermoluminescent response to γ-rays and neutrons of MgB4O7:Dy and MgB4O7:Dy,Na. Appl. Radiat. Isot. v. 147, p. 159–164, 2019. DOI: https://doi.org/10.1016/j.apradiso.2019.03.001

VIDYA, Y. S.; LAKSHMINARASAPPA, B. N. On the sulphoxy radicals in CaSO:Dy,Na thermoluminescent phosphor: electron paramagnetic resonance studies. J. Lumin. v. 5, p. 1791, 1993. DOI: https://doi.org/10.1088/0953-8984/5/12/007

Downloads

Published

2022-07-21

How to Cite

Challenges in personal and clinical dosimetry using Li2B4O7 and MgB4O7 as TLD and OSLD. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 10, n. 2A (Suppl.), 2022. DOI: 10.15392/bjrs.v10i2A.2019. Disponível em: https://www.bjrs.org.br/revista/index.php/REVISTA/article/view/2019.. Acesso em: 28 apr. 2024.

Similar Articles

1-10 of 349

You may also start an advanced similarity search for this article.