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ABSTRACT 
 
The dissemination of the activity is performed from radionuclide sources prepared in a sequence of dilutions and 

weighing methods. In this process, the activity of the source can be estimated statistically from the deposited 

mass and the activity concentration of the master solution. After preparation, the activity is obtained from 

absolute or relative measurement methods. However, the methods of activity determinations used may not fulfill 

the necessary independence of the conventional statistical approach due to the presence of possible correlations 

between activities that arise with the use of the same standardized sources or with the same method of quantity 

measurements. In this paper, Bayesian estimates for the relative deviation of activities and their uncertainty 

were obtained in order to evaluate the performance of the main sources’ preparation method. The estimate 

result (0.55 ± 0.27) % for a data set of radionuclide standardization performed between 2017 and 2018 at 

LNMRI, although close to zero, shows one should investigate possible effects affecting the preparation and 

measurement of the sources. This Bayesian estimate was validated by monte carlo simulation method.  
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1. INTRODUCTION 
 

In the area of Radionuclide Metrology, the dissemination of activity [1] is carried out from 

radionuclide sources (standards for the dissemination of quantity) prepared from a sequence of 

dilutions and weighing [2] of a solution with high concentration of activity. Dilutions are carried out 

in glass ampoules with a stable isotope acid carrier solution of the radionuclide in order to maintain 

the stability of the standard and avoid the adsorption of radionuclides on the inner wall of the flask 

and heavy [3]. Weighing are performed by means of the several differential weighing methods (the 

pycnometer method, the substitution method, elimination method and modified elimination 

method), depends on the required uncertainty associated to activity per mass of the source [4]. After 

the source preparation, the activity is determined from absolute or relative measurement methods 

for liquid or solid sources [5]. 

In this process of preparation of sources, two estimates of activity are available, the first 

obtained from the multiplication of the mass deposited by the activity concentration of the master 

solution and the second one obtained from the measurement methods. As the activity measurement 

does not change the activity of the prepared source, the relative deviation between the two activity 

values can be used to evaluate the performance of the process of preparation of sources and possible 

effects between the preparation of solid and liquid sources and the measurement of the activity. In 

order to performing these evaluations in presence of set of relative deviation and its uncertainty a 

mean value that summarizes all information about deviation is required. 

The problem to estimation of the mean value should be faced as that of the estimation of the 

key-comparison reference value (KCRV) for a data set. By this way a mean value for the relative 

deviation as the weighted mean based on classical statistical is recommended [6]. However, the 

presence of correlations between the relative deviation arisen from usage of the same standard 

sources and the activity measurement method does not comply with the independence required to 

this statistical approach. Thus, in order to get around this problem, in this work, a Bayesian estimate 

for the weighted mean of the relative deviation was determined for a data set of 45 radionuclide 

standardizations performed between 2017 and 2018 at LNMRI. 
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2. THEORETICAL BACKGROUND 
 

2.1. Bayesian theory applied to relative deviation 

The relative deviation of the activities is defined according to equation (1). In this work we 

consider the activity determined from the source preparation process Ad with uncertainty from the 

master solution, the measured activity of the radionuclide source A and its measurement uncertainty 

and, only as reference (without uncertainty) for the relative deviation, the average activity Am. 

D =
𝐴𝐴 − 𝐴𝐴𝑑𝑑
𝐴𝐴𝑚𝑚

 (1) 

The uncertainty of the relative deviation D is determined from the uncertainties of the activities 

A and Ad, all of activities were corrected to the same reference date. 

The system of measurements of sources activities yields as results the activity A and associated 

uncertainty u, which are assumed to be based on a large number of counts after all corrections for 

systematic effects have been applied. It is considered that these results, when determined from the 

GUM [7], come from a normal probability distribution centered on ξ, which describes the 

measurement system, this is the likelihood function related to the parameter ξ, according (2) [8]. 

The same hypothesis is assumed for the activity determined after the preparation of the sources, Ad. 

p(A, u|ξ)  ∝  exp �−  
1
2

 �
𝐴𝐴 − ξ

u
�
2

� (2) 

As the relative deviation defined in (1) is a function of the difference between the measured 

activity and the determined activity, its measurement system also obeys a normal distribution and 

thus, by changes of variables in (2), the likelihood function can be rewritten as a function of the 

relative deviation D, the measurement uncertainty of the relative deviation uD and the parameter η,  

as previously, the likelihood can be associated to a normal distribution, now centered on η, (3). 

p(D, uD|η)  ∝  exp �−  
1
2

 �
𝐷𝐷 − η

uD
�
2

� (3) 

To determine the posterior probability distribution p (η | D, uD) it is necessary to define the a 

priori distribution p (η) associated to the parameter [9]. As we do not have any information about 

the behavior of the parameter η that allows us to associate some probability distribution to it, it is 
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natural to use a reference non-informative prior (4), that is a constant when the estimation is based 

on a location parameter [10]. 

p(η)  ∝  1 (4) 

Thus, after the first measurement of activity A1 and uncertainty u1, the values D1 and uD1 are 

determined from (1). The posterior distribution p (η | D, uD) can be obtained (5). 

p(η|D1, uD1)  ∝  exp �−  
1
2

 �
𝐷𝐷1 − η

uD1
�
2

� (5) 

After observing the measurements sequences, conditionally independent given the parameter η, 

D = {D1, .., Dn} and uD = {uD1, .., uDn}, the posterior distribution becomes (6). 

p(η|𝐃𝐃,𝐮𝐮D)  ∝  exp �−  
1
2
��

𝐷𝐷𝑖𝑖 − η
uDi

�
2𝑛𝑛

𝑖𝑖=1

 � (6) 

The exponent of the à posteriori distribution can be rewritten in order to represent it as a normal 

distribution. 

−  
1
2
��

𝐷𝐷𝑖𝑖 − η
uDi

�
2𝑛𝑛

𝑖𝑖=1

 = −  
1
2
��

𝐷𝐷𝑖𝑖2

𝑢𝑢𝐷𝐷𝑖𝑖2

𝑛𝑛

𝑖𝑖=1

 − 2η�
𝐷𝐷𝑖𝑖
𝑢𝑢𝐷𝐷𝑖𝑖2

𝑛𝑛

𝑖𝑖=1

+ η2�
1
𝑢𝑢𝐷𝐷𝑖𝑖2

𝑛𝑛

𝑖𝑖=1

� (7) 

The first term in (7) does not depend on the parameter η and only has known values, so it can be 

included in the normalization factor of the à posteriori (8). 

p(η|𝐃𝐃,𝐮𝐮D)  ∝  exp �−  
1
2
�

1
𝑢𝑢𝑝𝑝2
�η2 − 2η𝑢𝑢𝑝𝑝2𝑏𝑏���  ∴  

1
𝑢𝑢𝑝𝑝2

≡�
1
𝑢𝑢𝐷𝐷𝑖𝑖2

𝑛𝑛

𝑖𝑖=1

 ;  𝑏𝑏 ≡�
𝐷𝐷𝑖𝑖
𝑢𝑢𝐷𝐷𝑖𝑖2

𝑛𝑛

𝑖𝑖=1

 (8) 

In (8), the square of the term between brackets is completed by adding and subtracting (bu2
p)2, 

where the last term in does not depend on the parameter η, so it can be included in the 

normalization factor. Then, the expression for à posteriori becomes (9). 

p(η|𝐃𝐃,𝐮𝐮D)  ∝  exp �−  
1
2
�

1
𝑢𝑢𝑝𝑝2
�η − 𝑏𝑏𝑢𝑢𝑝𝑝2�

2
�� (9) 

This expression for à posteriori distribution is the same of a random variable obeying a normal 

distribution with mean bu2
p and variance u2

p. Thus, from the definitions of b and u2
p, it can be 

concluded that the expected value and the parameter variance are, respectively, the weighted mean 

and variance obtained from the measured values, which pertain to the sequences D and uD (10). 
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E(η|𝐃𝐃,𝐮𝐮D) = 𝑢𝑢𝑝𝑝2  �
𝐷𝐷𝑖𝑖
𝑢𝑢𝐷𝐷𝑖𝑖2

𝑛𝑛

𝑖𝑖=1

   e   V(η|𝐃𝐃,𝐮𝐮D) = 𝑢𝑢𝑝𝑝2 = ��
1
𝑢𝑢𝐷𝐷𝑖𝑖2

𝑛𝑛

𝑖𝑖=1

�
−1

 (10) 

In presence of previous knowledge about the correlation between each relative deviation Di, the 

presented theoretical description should be rewritten in matrix form. In such case, the probability 

distribution associated to the vector of deviations D* is a multivariate normal distribution with a 

covariance matrix W, equation (11), where 1 is a unitary column vector and the superscript refers to 

transpose vector [11]. 

p(𝐃𝐃∗,𝐖𝐖|η) ∝  exp �−  
1
2

(𝐃𝐃∗ − 𝟏𝟏η)𝐓𝐓𝐖𝐖−𝟏𝟏(𝐃𝐃∗ − 𝟏𝟏η)� (11) 

Due to the lack of conditional independence, the likelihood factorization in equation (6) is not 

possible. However the Bayes theorem and the consideration about a reference non-informative prior 

remains valid (12). 

p(η|𝐃𝐃∗,𝐖𝐖) ∝  exp �−  
1
2

(𝐃𝐃∗ − 𝟏𝟏η)𝐓𝐓𝐖𝐖−𝟏𝟏(𝐃𝐃∗ − 𝟏𝟏η)� (12) 

As before, bracketed terms can be rearranged from a few multiplications and keep only the 

factors that contain the parameter (13). 

p(η|𝐃𝐃∗,𝐖𝐖) ∝  exp �−  
1
2
�(𝟏𝟏𝑻𝑻𝐖𝐖−𝟏𝟏1)�η2 − 2η�

𝟏𝟏𝑻𝑻𝐖𝐖−𝟏𝟏𝐃𝐃∗

𝟏𝟏𝑻𝑻𝐖𝐖−𝟏𝟏1
���� (13) 

A normal distribution for η can be obtained in analogy to the procedure used to obtain equations 

(8) and (9) (14). 

p(η|𝐃𝐃∗,𝐖𝐖) ∝  exp �−  
1
2
�(𝟏𝟏𝑻𝑻𝐖𝐖−𝟏𝟏1)�η − �

𝟏𝟏𝑻𝑻𝐖𝐖−𝟏𝟏𝐃𝐃∗

𝟏𝟏𝑻𝑻𝐖𝐖−𝟏𝟏1
�
2

��� (14) 

The expected posterior value and variance are obtained, as before, from the terms in the normal 

distribution (15) [12]. 

E(η|𝐃𝐃∗,𝐖𝐖) =
𝟏𝟏𝑻𝑻𝐖𝐖−𝟏𝟏𝐃𝐃∗

𝟏𝟏𝑻𝑻𝐖𝐖−𝟏𝟏1
   e   V(η|𝐃𝐃∗,𝐖𝐖) =

1
𝟏𝟏𝑻𝑻𝐖𝐖−𝟏𝟏1

 (15) 

A coverage interval can be established from probability distribution, the same way as in 

classical statistics, by converting the normal distribution into a standardized normal distribution 
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Φ(z) and by defining a random variable Z as a function of the mean and standard deviation of à 

posteriori (16). 

Z = [η − E(η|𝐃𝐃∗,𝐖𝐖)] �V(η|𝐃𝐃∗,𝐖𝐖)⁄  (16) 

Assuming two quantiles of the reduced normal -zγ and zβ that contain a coverage probability 

(1 − α), the probability of finding Z in the coverage interval [-zγ, zβ], which is given by equation 

(17). 

P �−zγ ≤ [η− E(η|𝐃𝐃∗,𝐖𝐖)] �V(η|𝐃𝐃∗,𝐖𝐖)⁄ ≤ zβ� = Φ�zβ� − Φ�−zγ� = 1 − α (17) 

The interval covered with the quantiles (13) has length of (zβ−zγ)�V(η|𝐃𝐃,𝐖𝐖), (18). 

E(η|𝐃𝐃∗,𝐖𝐖) − zγ �V(η|𝐃𝐃∗,𝐖𝐖) ≤ η ≤ E(η|𝐃𝐃∗,𝐖𝐖) + zβ �V(η|𝐃𝐃∗,𝐖𝐖) (18) 

It is important to highlights that in Bayesian statistics the coverage interval, also called the 

credibility interval, is determined for the random variable, the parameter η, and the interval is 

deterministic [11], unlike in the classical statistics, where the coverage interval is given for the 

deterministic parameter and the interval is a random variable [13]. 

From the definition and symmetry of the reduced normal distribution, the probabilities of the 

quantiles, respectively, β and γ are related to the coverage probability, (19). 

Φ�zβ� − Φ�−zγ� = 1 − (β + γ) = 1 − α ⇒ α = β + γ (19) 

According to the range probability value (1 − α), several quantum zγ and zβ can be established 

for different probabilities β and γ; however, in Bayesian theory the confidence interval for the 

parameter is determined by the pair of quantiles that form the shortest length (zβ−zγ)�V(η|𝐃𝐃,𝐖𝐖), 

subject to restriction (19). This minimum length interval may be different from the probabilistically 

symmetric range (usually used in classical statistics) for asymmetric or multimodal (multiple peaks) 

probability distributions. However, this is not the case for the normal distribution and other 

symmetric and unimodal distributions where the minimum and probabilistically symmetric length 

confidence intervals coincide, and β = γ =  α / 2, (20). 

E(η|𝐃𝐃∗,𝐖𝐖) − zα
2�  �V(η|𝐃𝐃∗,𝐖𝐖) ≤ η ≤ E(η|𝐃𝐃∗,𝐖𝐖) + zα

2�
 �V(η|𝐃𝐃∗,𝐖𝐖) (20) 

In this paper, the expanded uncertainty U that forms the confidence interval for the parameter 

η is defined, for a 95% coverage probability, by (21). 
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𝑈𝑈 = z2,5% �V(η|𝐃𝐃∗,𝐖𝐖) (21) 

 

3. CALCULATION PROCEDURE 
 

3.1. Input data 

The data set obtained from 45 sources prepared between 2017 and 2018 are shown in Tables 1 

and 2. In these Tables, the expanded uncertainty U is a relative one. The terms GMX, CI and AC 

refers to respectively gamma spectrometry, ionizing chamber and 4πβ-γ anti-coincidence counting 

methods. In standard ID column are indicated the ionizing chamber calibration factor (different for 

each nuclide) or the standard code. Solid (S) and Liquid (L) are the physical states of the source. 

The covariance matrix W required in equation (15) was obtained from covariance matrix ψA 

between pairs of measurement activities, from covariance between pairs of estimated activities ψAd 

and the crossed covariance between measurement and estimated activities ψAd,A (22). 

𝐖𝐖 = 𝐌𝐌−𝟏𝟏�ΨA + ΨAd − ΨA,Ad − ΨA,Ad
T �𝐌𝐌−𝟏𝟏   (22) 

In equation (22) the diagonal matrix M is composed by the mean of the activities. The elements 

of each covariance matrix were calculated considering the square of the lowest standard uncertainty 

between equal radionuclides, measured with the same measurement method and radionuclide 

standard. This approach is justified because this kind of covariance is related to B-type uncertainties 

which should have the same value for the pairs of activities uncertainties. 
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Table 1. First 27 data used to determine activity deviation and a posteriori parameters. 

 Master Solution Source 

Radionuclide Ad 

(kBq) 
U 

(%) 
Method 

 
Stand. 

ID 
A 

(kBq) 
U 

(%) 
Method 

 
Stand. 

ID 
Code 

 
137Cs 20.7 0.92 GMX Factor 21.1 1.3 GMX 24S99 14S03 
137Cs 20.7 0.98 GMX Factor 21.4 1.4 GMX 24S99 67S08 
137Cs 228.9 0.73 GMX Factor 221.3 1.4 GMX 24S99 74S14 
137Cs 57.1 0.74 GMX Factor 60.0 1.3 GMX 24S99 193S14 
137Cs 57.6 0.74 GMX Factor 56.7 1.4 GMX 24S99 214S14 

241Am 0.106 1.4 GMX 32 0.11 9.2 GMX 32 14L17 
152Eu 49.9 1.5 CI3 Factor 48.9 3.5 GMX 36 45L17 

241Am 0.69 1.4 GMX 32 0.69 1.5 GMX 32 55L17 
60Co 0.64 0.84 GMX 67 0.63 1.0 GMX 47 55L17 
137Cs 1.02 2.7 GMX 113 1.04 2.8 GMX 79 55L17 
210PB 1.06 2.5 GMX 17 1.00 3.5 GMX 8 55L17 
57Co 1.06 0.76 CI3 Factor 1.08 1.7 GMX 35 55L17 
133Ba 1.41 1.0 GMX 24 1.49 1.3 GMX 24 55L17 
134Cs 1.66 0.85 CI3 Factor 1.71 2.8 GMX 60 55L17 
54Mn 1.85 1.2 CI3 Factor 1.77 1.3 GMX 43 55L17 
65Zn 2.12 1.8 CI3 Factor 2.33 2.0 GMX 36 55L17 
226Ra 1.11 2.6 GMX 03 1.10 2.5 GMX 47 66L17 
60Co 21.7 0.50 CI3 Factor 21.7 2.5 GMX 47 87L17 
137Cs 11.3 1.3 CI3 Factor 11.4 2.8 GMX 79 88L17 
60Co 20.8 0.50 CI3 Factor 21.0 1.2 CI3 Factor 87L17 

241Am 6.2 1.4 GMX 32 5.8 1.3 GMX 52 18L18 
241Am 5.8 1.4 GMX 32 5.5 1.4 GMX 52 17L18 

60Co 2.48 1.3 NaI 10 2.47 1.3 NaI 107 47 
60Co 2.48 1.3 NaI 10 2.5 6.2 CI3 Factor 47 
226Ra 0.132 2.6 GMX 03 0.134 2.6 GMX 47 29L18 
22Na 365 0.69 CI3 Factor 337 2.2 GMX 132S08 13S17 
60Co 12.2 0.49 CI3 Factor 12.2 1.2 GMX 67 32L18 
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Table 2. Last 18 data used to determine activity deviation and a posteriori parameters. 

 Master Solution Source 

Radionuclide Ad 

(kBq) 
U 

(%) 
Method 

 
Stand. 

ID 
A 

(kBq) 
U 

(%) 
Method 

 
Stand. 

ID Code 
60Co 13.1 0.49 CI3 Factor 13.0 1.0 GMX 67 33L18 

241Am 3.84 0.49 CI1 Factor 3.9 1.5 GMX 52 34L18 
241Am 4.14 0.49 CI1 Factor 4.1 1.3 GMX 52 35L18 
137Cs 399 0.73 CI3 Factor 453 1.6 CI3 Factor 43S18 
137Cs 317 0.73 CI3 Factor 362 1.7 CI3 Factor 44S18 
137Cs 399 0.73 CI3 Factor 446 1.4 GMX 24S99 43S18 
137Cs 317 0.73 CI3 Factor 352 1.4 GMX 24S99 44S18 
137Cs 316 0.73 CI3 Factor 367 1.5 NaI 41S16 44S18 
137Cs 399 0.73 CI3 Factor 464 3.3 NaI 24S99 43S18 

241Am 27.8 1.2 CI3 Factor 28.2 1.9 GMX 22S95 146S18 
133Ba 19.6 0.51 CI3 Factor 18.6 0.90 GMX 129S15 147S18 
60Co 45.4 0.48 CI3 Factor 46.1 1.3 GMX 130S08 148S18 
152Eu 4.9 1.7 CI3 Factor 4.8 2.5 GMX 121S00 149S18 
166Ho 10.7 0.50 AC Factor 10.9 2.8 GMX 34S00 150S18 
137Cs 22.9 0.76 CI3 Factor 23.3 1.4 GMX 37S97 151S18 
137Cs 57.9 0.76 CI3 Factor 57.8 1.4 GMX 37S97 152S18 
137Cs 58.4 0.76 CI3 Factor 57.1 1.5 GMX 37S97 153S18 
137Cs 59.5 0.76 CI3 Factor 60.1 1.5 GMX 37S97 154S18 

 

3.2. Validation by Monte Carlo method 

The introduced theory was validated by the propagation of distributions principle as stated in 

JCGM 101 [8]. It was performed 7 × 105 simulations for each random variable normally distributed 

A and Ad in Table 1. The mean of the normal distribution is the activity while the standard 

deviation is considered the relative standard uncertainty. The covariance matrix W also took part in 

this simulation which was implemented by Monte Carlo method (MCM) using a properly 

spreadsheet plugin.  
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4. RESULTS AND DISCUSSION 
 

Table 2 shows the expected value and the expanded uncertainty for the parameter η of the 

posterior distribution of the relative deviation D obtained by Bayesian theory and Monte Carlo 

method. These results are very compatible so one can consider the theory is validated. 

 

Table 2. A posteriori estimates for parameter η . 

 E[η|D,uD]  
(%)  

U 
 (%) 

Bayesian 0.5514  0.27  
MCM 0.5512  0.26  

 

Figure 1: MCM results for parameter η.  
 

 
Figure 1 shows the simulation results by MCM which confirms the normal distribution for the 

parameter η. Besides, the parameters kurtosis and skewness emphasizes the convergence for a 

normal distribution to the simulation of the experimental data. 

Figure 2 shows the comparison between the estimated values and the values of the individual 

relative deviations Di for the radionuclide sources. 
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Figure 2: Individual relative deviations Di, expected posterior value E[η | D, uD] and 
confidence interval limits for parameter η.  

 

 
 

It is important to note that if the covariance was not considered the expected value would be 

almost the double 1.16% with the same uncertainty so it would affected by the greater values which 

are responsible for the dispersion between the individual deviations. It can clearly observed with 

respect to the set of 137Cs sources at right upper corner. 
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5. CONCLUSIONS 
 

From the radioactive decay law, it is expected that a source of radionuclides will naturally 

reduce activity, and that with the application of corrections to these effects, as was done in this 

paper, the variation of the activity with time is zero. However, the result (of this work) indicates that 

the variation of the activity between the preparation of the sources and the measurement is positive, 

although it is very close to zero, but should be of order 1% if the lack of independence was not 

considered. This result may be a consequence of effects on source preparations, such as residual 

evaporation and correction of the balance indication, or effects arising on activity measurements 

resulting, for example, from calibration factors. A further research will be done to test these 

hypotheses and adequately conclude on the cause of the positive relative deviation between 

activities.  

One can conclude as a performance characteristic to preparing process that the accuracy to 

prepared sources from a nominal activity value previously specified is not better than (0.55 ± 

0.27) %.  
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