

Calibração de um sistema portátil para bioanálise de amostras de urina em situações de emergência

Erbe^a A.L.D., Dantas^a A.L., Souza^a W.O., Dantas^a B.M.

^a Instituto de Radioproteção e Dosimetria, 22783-116, Av. Salvador Allende s/n amidegenhardt@gmail.com

RESUMO

A bioanálise in vitro é utilizada para monitoração interna da exposição em situações de rotina e emergência. Este trabalho descreve a calibração de um sistema de deteção portátil para medição de radionuclídeos em amostras de urina utilizando-se fonte líquida padrão de ¹⁵²Eu na geometria de 1L. A sensibilidade do sistema foi avaliada com base na dose efetiva mínima detetável para ¹⁰³Ru, ¹⁰⁶Ru, ¹³⁴Cs, ¹³⁷Cs e ⁶⁰Co, utilizando-se o software AIDE e supondo o cenário de incorporação. Exceto para o ¹⁰⁶Ru, o sistema apresentou sensibilidade suficiente para medir atividades decorrentes de incorporações que resultem em doses efetivas abaixo de 1 mSv. *Keywords: monitoração interna, bioanálise de urina, resposta a emergência.*

ABSTRACT

In vitro bioassay is used for internal monitoring of the exposure in routine and emergency situations. This work describes de calibration of a portable detection system for the measurement of radionuclides in urine samples using a liquid standard source of ¹⁵²Eu in 1 L geometry. System sensitivity was evaluated based on the minimum detectable effective dose for ¹⁰³Ru, ¹⁰⁶Ru, ¹³⁴Cs, ¹³⁷Cs e ⁶⁰Co using AIDE software and considering a scenario of intake by inhalation. Except for ¹⁰⁶Ru, the system presented enough sensitivity to measure activities excreted as a result of intakes which result in effective doses below 1 mSv.

Keywords: internal monitoring, urine bioassay, prompt response to emergency.

1. INTRODUÇÃO

Materiais radiativos são amplamente utilizados na indústria, medicina, pesquisa e ensino, e até mesmo em produtos à venda diretamente para o público em geral [1]. Eles são utilizados para radiografia industrial, esterilização de materiais, radioterapia, medicina nuclear e detetores de fumaça. Fontes que tenham sido roubadas ou perdidas em laboratórios, indústrias ou no seu transporte, podem dar origem a acidentes radiológicos [1].

Em situações de acidentes radiológicos e nucleares, existe o risco de incorporação de radionuclídeos por indivíduos da população, tornando as monitorações interna e externa elementos essenciais em uma resposta a emergência [2]. As ações de remediação nestes casos inclui monitoração ambiental e individual, e permite a classificação do acidente, direciona decisões e ações de intervenção com base em níveis operacionais de intervenção (OIL), previne a disseminação da contaminação, auxilia na obtenção de informações para segurança dos trabalhadores da emergência e sobre os perigos resultantes do acidente, determina a extensão e duração dos perigos ocasionados, e confirma eficácia das medidas remediadoras e procedimentos de descontaminação [3].

A monitoração interna em situações de emergência difere da monitoração ocupacional de rotina, pois requer resultados rápidos e capacidade de atender locais distantes e de difícil acesso.

Este trabalho descreve a calibração e avaliação da sensibilidade de um sistema portátil de monitoração interna disponível no Laboratório de Monitoração *in vivo* do Instituto de Radioproteção e Dosimetria (LABMIV-IRD), destinado à medição de emissores gama de alta energia em amostras de urina para utilização em missões de pronta resposta a situações de emergência.

2. MATERIAIS E METODOS

2.1. Materiais utilizados

Os materiais utilizados neste trabalho estão disponíveis no IRD, e consistem no seguinte:

• Detetor cintilador NaI(Tl) 3x3 da marca CANBERRA®, modelo 802, com a Base Universal para tubo MCA modelo Osprey[™];

Frasco de polietileno de 1L contendo solução-padrão de ¹⁵²Eu diluída em meio ácido (HNO3 a 0,1 mol.L⁻¹), fornecida pelo Laboratório Nacional de Metrologia das Radiações Ionizantes (LNMRI/ IRD), com atividade de 8448 Bq em 13/07/2017;

• Frasco de polietileno de 1L preenchido com água destilada para contagem da radiação de fundo;

 Fonte puntiforme de ¹⁵²Eu com atividade de 121730 Bq em 28/12/2000, para calibração em Canal x Energia;

• Software AIDE, versão 6.0 disponível no LABMIV/IRD, para cálculos de estimativa de dose.

2.2. Metodologia

Primeiramente foi realizada a calibração em "canal vs energia" utilizando-se uma fonte puntiforme de ¹⁵²Eu. Este tipo de calibração relaciona os valores das energias fótons mais intensos do ¹⁵²Eu (121,8 keV, 244,7 keV, 344,3 keV, 778,9 keV, 1112,1 keV e 1408,0 keV) com os respectivos canais dos fotopicos.

Em seguida, foi realizada a calibração em eficiência do sistema de deteção consiste na obtenção de uma curva "Eficiência x Energia" para a geometria específica de interesse, neste caso, Frasco de 1 L.

Posteriormente são calculadas as atividades mínimas detectáveis e doses efetivas mínimas detectáveis para radionuclídeos de interesse na geometria de medição.

Cinco medidas consecutivas de 600 segundos foram realizadas com o detetor colimado (distância do topo do frasco ao detetor = 2,5 cm). As contagens foram registradas em cinco regiões

de interesse correspondentes aos fótons de 121,78 keV, 244,7 keV, 344,3 keV, 778,9 e 964,10 keV do¹⁵²Eu. A eficiência de deteção em cada ROI foi calculada da seguinte forma:

$$Ef = \frac{(C/T)}{(A \times Ig)}$$
(1)

onde Ef é a eficiência de deteção no ROI do fóton de interesse; C é o total de contagens no ROI; T é o tempo de contagem (s); A é a atividade da fonte padrão de ¹⁵²Eu (Bq) e Ig é a intensidade de emissão gama na energia medida.

Para a avaliação a sensibilidade da técnica, foram selecionados cinco radionuclídeos de interesse para monitoração interna em caso de um acidente nuclear: ¹⁰³Ru, ¹⁰⁶Ru, ¹³⁴Cs, ¹³⁷Cs e ⁶⁰Co. A partir da curva "Eficiência x Energia", foram calculadas as eficiências de deteção para as respectivas energias gama e as Atividades Mínimas Detectáveis (MDA) para cada radionuclídeo.

$$AMD_{Bq} = \frac{4,65 \sqrt{N}}{T \times Ef \times Ig}$$
(2)

onde AMD é a Atividade Mínima Detetável (Bq); N é o total de contagens do BG na ROI em 300 segundos; Ef é a eficiência de deteção (cps/dps), T é o tempo de contagem e Ig é a intensidade de emissão gama na energia medida.

Seguindo as recomendações da publicação AIEA RSG 1-2 (AIEA, 1999), o software AIDE foi utilizado para calcular a atividade presente na urina de 24 horas resultante de inalação única de 1 Bq de ¹⁰³Ru, ¹⁰⁶Ru e ⁶⁰Co na forma de particulados com AMAD = 1 μ m e Classe de solubilidade no trato respiratório tipo M.

O cenário utilizado para o ¹³⁴Cs e ¹³⁷Cs foi inalação única, AMAD = 1 μ m, absorção tipo F. Com base nas frações de excreção "m(t)" fornecidas pelo software, foi calculada a Incorporação Mínima Detetável para esses radionuclídeos, supondo que a atividade medida na urina é igual à AMD da técnica.

$$IMD_{Bq} = \frac{AMD}{m(t)_{inalação}}$$
(3)

onde AMD é a atividade mínima detetável (Bq) e m(t) é a fração de excreção de urina (Bq/Bq).

Usando o valor de IMD e o coeficiente de dose dado pelo software AIDE, calculou-se a dose efetiva detetável mínima para os radionuclídeos de interesse.

$$DEMD = IMD * e(50)$$
(4)

Onde DEMD é a dose efetiva comprometida mínima detetável (mSv) e e(50) é o fator de dose efetiva comprometida (mSv/Bq).

3. RESULTADOS E DISCUSSÃO

A figura 1 apresenta a curva de calibração "Canal vs energia" obtida com fonte padrão de ¹⁵²Eu. O ajuste foi realizado pelo software do multicanal.

A geometria de medição do frasco de 1L está demonstrado na figura 2.

Figura 2 : Geometria de medição do amostra líquida em frasco de 1L com detetor NaI(Tl) 3x3.

Foram calculadas as eficiências de detecção para as 5 energias de emissão gama do ¹⁵²Eu. A curva de eficiência vs. energia é apresentada na figura 3.

Figura 3 :*Curva de eficiência vs energia do detetorr NaI(Tl)3x3 colimado para a geometria de frasco de 1L.*

A tabela 1 mostra as incertezas respectivas à eficiência em cada energia das ROI, que foram estimadas considerando a incerteza da atividade da fonte, cerca de 3,6 %, e a incerteza da contagem líquida.

	.Energia	Eficiência	Incerteza	%
	121,78	0,0064	$\pm 0,00023$	3,60
	244,7	0,0060	\pm 0,00022	3,66
	344,28	0,0055	\pm 0,00020	3,64
	778,9	0,0022	\pm 0,00008	3,56
	964,1	0,0017	\pm 0,00006	3,60
-				

Tabela 1: Incertezas da eficiência em cada RDI

A tabela 2 relaciona os radionuclídeos de interesse e suas respectivas energias de emissão gama.

Radionuclideo	Energia (kev)	
¹⁰⁶ Ru	155,03	
¹⁰³ Ru	497,1	
¹³⁴ Cs	604,7	
¹³⁷ Cs	661,6	
⁶⁰ Co	1173,3	

Tabela 2: Energias de emissão gama dos radionuclídeos de interesse.

As AMDs para cada radionuclídeo de interesse se encontram na tabela 3.

Radionuclideo	AMD (Bq)	
¹⁰⁶ Ru	1810	
¹⁰³ Ru	475	
¹³⁴ Cs	484	
¹³⁷ Cs	535	
⁶⁰ Co	819	

Tabela 3: AMD para cada radionuclídeo de interesse.

O ¹⁰⁶Ru apresentou o mais elevado valor de AMD. Isso pode ser explicado pela sua baixa intensidade de emissão gama, cerca de 15 %, e pela elevada radiação de fundo na sua RDI, em relação aos demais radionuclídeos avaliados. Isto torna necessária a presença de maior atividade de ¹⁰⁶Ru na amostra de maneira que seja possível sua identificação e quantificação.

A tabela 4 fornece os valores de m(t), obtidos com auxílio do Software AIDE, de acordo com o cenário de incorporação simulado, IMD calculado com base no valor de AMD para cada radionuclídeo de interesse, e(50) (também fornecido pelo AIDE de acordo com o cenário de incorporação) e a DEMD calculada com base na IMD e e(50) para a geometria de medição.

Radionuclídeo	m(t)(Bq/Bq)	IMD(Bq)	e(50) (mSv/Bq)	DEMD (mSv)
¹⁰⁶ Ru	$4,02 \times 10^{-3}$	45,55x10 ⁵	2,60x10 ⁻⁵	11,7
¹⁰³ Ru	3,96x10 ⁻³	88,44x10 ³	2,26x10 ⁻⁶	0,3
¹³⁴ Cs	$4,05 \times 10^{-3}$	81,19x10 ³	6,80x10 ⁻⁶	0,8
¹³⁷ Cs	5,71x10 ⁻³	$62,61 \times 10^3$	4,80x10 ⁻⁶	0,4
⁶⁰ Co	7,75x10 ⁻³	10,97x10 ⁴	9,15x10 ⁻⁶	1,0

Tabela 4 : Valores de m(t), IMD, e(50) e DEMD para cada radionuclídeo de interesse.

Para os radionuclídeos ¹⁰³Ru, ¹³⁴Cs, ¹³⁷Cs e ⁶⁰Co, o sistema se mostrou sensível para avaliação de incorporação que resultem em doses efetivas comprometidas abaixo ou igual a 1 mSv. No caso do ¹⁰⁶Ru, o valor de DEMD foi de 11,8 mSv. Isso pode ser relacionado às características de emissão de fótons, conforme discutido anteriormente.

4. CONCLUSÕES

Com base nos resultados obtidos é possível concluir que o sistema de deteção avaliado possui sensibilidade suficiente para avaliação de incorporações que resultem em doses efetivas comprometidas abaixo ou igual 1 mSv para os radionuclídeos ¹⁰³Ru, ¹³⁴Cs, ¹³⁷Cs e ⁶⁰Co. Para o radionuclídeo¹⁰⁶Ru a dose efetiva mínima detetável alcançada, nas condições de geometria de deteção e tempo de contagem, foi de 11,8 mSv. Este resultado, entretanto, não inviabiliza a utilização da técnica para avaliação de incorporações em situações de acidente.

REFERÊNCIAS

- [1] IAEA INTERNATIONAL ATOMIC ENERGY AGENCY. Generic Procedures for Assessment and Response during a Radiological Emergency, IAEA-TECDOC-1162, Vienna (2000).
- [2] LI. C, ANSARI. A, ETHERINGTON. G, JOURDAIN. JR, KUKHTA. B, KURIHARA. O, LOPEZ. MA, MÉNÉTRIER. F, ALVES DOS REIS A., SOLOMON. S, ZHANG. J, CARR. Z,. Managing Internal Radiation Contamination Following an Emergency: Identification of Gaps and Priorities. Radiat Prot Dosimetry. Sep;171(1):78-84, 2016.
- [3] IAEA INTERNATIONAL ATOMIC ENERGY AGENCY. Assessment of Occupational Exposure Due to Intakes of Radionuclides. Safety Report Series No. RS-G-1.2, Vienna, 1999.