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ABSTRACT 

 

The greatest impact of the tomography technology currently occurs in medicine. The success is due to the 

fact that human body presents standardized dimensions with well-established composition. These conditions 

are not found in industrial objects. In industry, there is a great deal of interest in using the tomography in 

order to know the inner part of (i) manufactured industrial objects or (ii) the machines and their means of 

production. In these cases, the purpose of the tomography is:  (a) to control the quality of the final product 

and (b) to optimize the production, contributing to the pilot phase of the projects and analyzing the quality of 

the means of production. This scan system is a non-destructive, efficient and fast method for providing sec-

tional images of industrial objects and it is able to show the dynamic processes and the dispersion of the ma-

terials structures within these objects. In this context, it is important that the reconstructed image may present 

a great spatial resolution with a satisfactory temporal resolution. Thus, the algorithm to reconstruct the imag-

es has to meet these requirements. This work consists in the analysis of three different iterative algorithm 

methods, namely the Maximum Likelihood Estimation Method (MLEM), the Maximum Likelihood Trans-

mitted Method (MLTR) and the Simultaneous Iterative Reconstruction Method (SIRT. The analyses in-

volved the measurement of the contrast to noise ratio (CNR), the root mean square error (RMSE) and the 

Modulation Transfer Function (MTF),in order to know which algorithm fits the conditions to optimize the 

system better.     

The algorithms and the image quality analyses were performed by Matlab® 2013b. 

Keywords: Iterative Algorithms, Quality Evaluation, Industrial Tomography. 
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1. INTRODUCTION 

 

Unlike the standard aspect of the computed tomography (CT) for medical application, industrial tomography 

systems applications should be adapted to the different size and geometry objects, usually placed in an ag-

gressive environment, which contains flammable superheated or corrosive materials, and, eventually, subject 

to high internal pressure, all these factors bring in many difficulties for setting CT devices [1, 2]. In addition, 

the industrial systems involve multiphase dynamic processes containing solids, liquids and gases mixtures 

[3-7]. In other words, it is necessary to develop a tomographic system suitable for each industrial purpose [2, 

6].   

The CT systems based on transmission uses an array of encapsulated radioactive sources and detectors 

placed in opposite sides of the targeted object [7-9]. First generation tomography systems consist of a source 

emitting a collimated radiation pencil beam and a radiation detector (Fig.1a). The source-detector system 

moves in opposite sides of the object, measuring the attenuation of radiation at each position [10]. 

In the second generation CT systems, a set of detectors is placed opposite to the radioactive source with fan 

beam, moving (source and detector) around the object under study (Fig.1b) [10].  

In the tomography of third generation, the source is collimated so that the path crossed by beams is similar to 

a fan (Fig.1c). The system rotates around the targeted object, obtaining a particular view for an "x" position 

of the source-detector array. In this type of system, several sources and arrays of multiple detectors may be 

used [10]. 

Finally, the so-called fourth-generation CT systems use a fixed array of detectors (a large number of detec-

tors mounted on a fixed ring) and a radioactive source that rotates around the object (Fig.1d). Records of any 

measure are from the detector, representing a view of the object. However, all CTs are constituted, basically, 

of the same parts: radioactive sources; radiation detectors; a data acquisition system and a suitable computer 

[10]. 
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Figure 1: (A) translation - rotation of a pencil beam (first generation), (B) translation - rotation of sources 

in a fan beam (second generation), (C) rotation of a fan-beam (third generation), (D) detector fixed - rota-

tion source (fourth generation). 

 
 

 

These scan systems are able to show the dynamic processes and the dispersion of the material structures 

within the objects. In this context, it is important that the tomography reconstructed image may present a 

great spatial resolution with a satisfactory temporal resolution [11, 12]. Thus, the algorithm selected to re-

construct the images has to meet these requirements. The aim of this work consists in the analysis of differ-

ent iterative algorithms. 
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2. MATERIALS AND METHODS 

 

A third generation computed tomography system, comprising three NaI(Tl) detectors of 50 x 50 mm2 (di-

ameter, thickness) shielded with lead, was used. The detectors were placed on a gantry in fan-beam geometry 

opposite to the gamma ray source, as shown in Fig.1. The three NaI(Tl) detectors were individually collimat-

ed with lead containing a septa of 2 x 5 x 50 mm3 (width, height, depth). The detectors move 53 times in a 

step angle of 0.226 degrees, emulating 159 detectors per projection. The counting time for sampling was 5 

seconds. Thereafter, the support table containing the gantry and the 137Cs gamma source (Fig. 1) rotates six 

degrees forward and this process goes on up to completing 360 degrees, totalizing 60 projections. For a total 

of 9540 samples (159 'virtual detectors' x 60 projections), the system spends 15,900 seconds or 4.4 hours to 

obtain each tomography image.  The 137Cs radioactive source, with an activity of 3.0 GBq (81 mCi), was 

placed into a radioactive shield-case with an aperture angle of 36 degrees (Fig. 2). This system had been 

previously described by Mesquita et al [12, 13]. 

 

Figure 2: Diagram of the third generation CT scanner used. (a) top view and (b) side view [14] 

 

 

A multiphase phantom was used to evaluate the performance of the multisource third generation tomography 

device [12]. The phantom consists of a polymethylmethacrylate (PMMA ((ρ ≈ 1.19 g/cm3)) solid cylinder 
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containing three holes: one filled with steel (ρ ≈ 7.874 g/cm3), another with aluminum (ρ ≈ 2.698 g/cm3) and 

a third one empty (filled with air) and surrounded with glass, as illustrated in Fig. 3. 

 

Figure 3: Illustration of the multiphase phantom; (1) Air surrounded with glass wall; (2) aluminum bar; 

and (3) steel bar. The phantom is composed of PMMA. 

 

 

The image reconstruction is based on the exponential decay law defined by equation (1), which is known as 

Lambert-Beer’s law [15]:  

 

𝐼 =  𝐼0𝑒
−∑ 𝜇𝑖𝑤𝑖,�⃗� 

𝑁
𝑖=1  (1) 

where 𝐼0 is the initial intensity of the beam radiation that focuses on the object at j direction, 𝐼 is the intensity 

of the beam radiation through the object, N is the number of pixels on the matrix, µ𝑖 is the linear attenuation 

coefficient of the matter and 𝑤𝑖,𝑗  is the length of the beam radiation through pixel I and it is an element of 

the weighted matrix W [15]. Fig. 4 illustrates the scheme of the discretized grip to measure 𝑤𝑖,𝑗 . 
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Figure 4: Discretized grid 

 

 

The discretized ray sum for each ray j (j = 1, 2, …, J) may be expressed as the equation (2) [15]. 

 

𝑝𝑗
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 𝑙𝑛 (

𝐼𝑜𝑗

𝐼𝑗
) = ∑𝑤𝑖𝑗𝜇𝑖

𝑁

𝑖=1

 (2) 

The size of W is defined by the number of pixels in the reconstruction grid. Due to Poisson noise corruption 

of the measured data, a term 𝜂𝑗 describing the noise is added to the equation (3) [15]: 

 

𝑝𝑗
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 𝑙𝑛 (

𝐼𝑜𝑗

𝐼𝑗
) = ∑𝑤𝑖𝑗𝑥𝑖 + 𝜂𝑗

𝑁

𝑖=1

 (3) 

Solving a high number of linear equations, based on measurements corrupted by random variables and noise, 

requires the use of iterative algorithms. The iterative methods are divided in two categories, the algebraic and 

the statistical methods [15].  Algebraic reconstruction methods solve a set of linear equations by comparing 

the measured data set to an estimate and reducing the difference between them. Statistical methods recon-

struct the image by implementing the maximization of the likelihood function, recognizing Poisson distribu-

tion function of the projections in relation with the measurements [15]. In the present work, the Simultaneous 

Iterative Reconstruction Technique (SIRT), the Maximum Likelihood Expectation Maximization (MLEM) 
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and the Maximum Likelihood Algorithm for Transmission Tomography (MLTR) were used to recon-

struct the images, so that the first algorithm is an algebraic method and the last two are statistical 

methods.  

The SIRT algebraic method is expressed by the equation (4) [15] 

 

µ𝑗
(𝑛+1)

= µ𝑗
𝑛 + 𝛿 ∑𝑤𝑖𝑗

(𝑔𝑖 − ∑ 𝑤𝑖𝑘
𝑁
𝑘=1 µ𝑘

(𝑛)
)

∑ 𝑤𝑗𝑘
2𝑁

𝑘=1

𝑀

𝑖=1

 (4) 

where, µ is the pixel index, 𝛿 is the relaxation parameter, 𝑔 is the 𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 and w is the weighted 

matrix element. 

The statistical methods, MLTR and MLEM, are expressed by equations (5) and (6), respectively 

[15]. 

 

µ𝑗
(𝑛+1)

= µ𝑗
(𝑛)

+

∑ (𝑤𝑖𝑗 (𝐼0𝑒
(−∑ ℎ𝑖𝑘µ𝑘

(𝑛)𝑁
𝑘=1 ) − 𝐼))𝑀

𝑖=1

∑ (𝑤𝑖𝑗𝐼0𝑒
(−∑ 𝑤𝑖𝑘µ𝑘

(𝑛)𝑁
𝑘=1 ) ∑ 𝑤𝑖𝑘

𝑁
𝑘=1 )𝑀

𝑖=1

 (5) 

 

µ𝑗
(𝑛+1)

= 
∑ [𝐼0𝑒

(−∑ 𝑤𝑖𝑘µ𝑘
(𝑛)𝑁

𝑘=1 ) (1 − 𝑒
−𝑤𝑖𝑗µ𝑗

(𝑛)

)]𝑀
𝑖=1

∑ [𝐼𝑖 − 𝐼�̅� + 0.5(1 + 𝑒
−𝑤𝑖𝑗µ𝑗

(𝑛)

)𝐼0𝑒
(−∑ 𝑤𝑖𝑘µ

𝑘
(𝑛)𝑁

𝑘=1 )]𝑀
𝑖=1

 (6) 

All reconstruction was performed in a matrix of 128x128 pixels and 200 iterations. All physical 

measurements and reconstructions were performed by Matlab 2013b®. Root Mean Square Error 

(RMSE) was measured to evaluate which iterative algorithm approaches the pixel values, obtained 

experimentally for the theoretical values. This method is widely used to measure the quality of the 

image. The RMSE was obtained by equation (7) [16], 

𝑅𝑀𝑆𝐸 = √
∑ (𝜇𝑖 − 𝜇�̂�)2𝑁

𝑖=1

𝑁
 (7) 
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where, 𝜇𝑖is the experimental pixel value obtained, 𝜇�̂� is the theoretical linear attenuation coefficient. 

The theoretical image is presented in Fig. 5. 

 

Figure 5: Theoretical image 

 

 

The Contrast to Noise Ratio (CNR) was measured selecting regions of interest (ROIs) in the images of the 

phantom (Fig. 2) obtained, experimentally, for the different algorithms. A circular ROI was placed over the 

cylinder corresponding to the aluminum (ROI A) and another ROI, with the same size of ROI A, placed over 

the background, corresponding to the PMMA (ROI B), then the values of the CNR were obtained by equa-

tion (8) [16,17 ].  

 

𝐶𝑁𝑅 = 
|𝜇𝐴̅̅ ̅ − 𝜇𝐵̅̅̅̅ |

√𝜎𝐴
2 + 𝜎𝐵

2

2

 
(8) 

 

where, 𝜇𝐴̅̅ ̅ is the mean pixel value of ROI A, 𝜇𝐵̅̅̅̅  is the mean pixel value of  ROI B, 𝜎𝐴is the standard devia-

tion of ROI A and 𝜎𝐵 is the standard deviation of ROI B. The ROIs are presented in Fig. 6, where the red 

circle represents ROI A and the blue circle represents ROI B. 
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Figure 6: ROIs used to measure the CNR 

 

 

The most comprehensive metric method used to measure and report spatial resolution of imaging systems is 

the modulation transfer function (MTF) [17-20].  Conventionally, the spatial resolution is estimated as the 

inverse of the value at 10% of MTF curve [17-20]. In the present work, the MTF was calculated using the 

Edge Spread Function, commonly known as ESF parameter [19, 20]. 

 

3. RESULTS AND DISCUSSION   

 

The reconstructed images of the phantom obtained by the third generation industrial tomography are present-

ed in Fig. 7, where Fig. 7a. represents the reconstruction by SIRT algorithm; Fig. 7b., by  MLTR algorithm; 

and Fig. 7c., by MLEM algorithm.  
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Figure 7: Images reconstructed of the phatom using (a) SIRT algorithm; (b) MLTR algorithm and (c). MLEM 

algorithm 

 

RMSE parameter, applied to perform the quality of the image for the three different algorithms (SIRT, 

MLTR and MLEM), was calculated using equation (7), comparing the experimental images with the theoret-

ical image. Fig. 8 shows the curve behavior for each algorithm. 

 

Figure 8: RMSE analysis for the three algorithms 

 

 

Fig 8 shows that the MLEM algorithm converges and approaches the theoretical values with fewer numbers 

of iteration compared to the other two algorithms. By this analysis, it is possible to observe that the images 
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reconstructed by MLEM algorithm present better quality, converging their optimum with fewer numbers of 

iteration. 

The analysis of the noise influence was performed by CNR parameter on the three different algorithms. The 

results are shown by Fig. 9. From this figure, it is possible to observe that even MLEM and MLTR algo-

rithms reaching a higher CNR value in the first iterations, these values decrease as the number of iterations 

rises, different from SIRT algorithm, which reaches a lower CNR value, but decreases less than the others, 

what means that the noise influences less in the images reconstructed by the SIRT algorithm, as the number 

of iteration increases, when compared to the other two algorithms. 

 

Figure 9: CNR analysis by the number of iterations    

 

 

The spatial resolution of the reconstructed images was measured by the MTF (f). MTF curves, by the fre-

quency spectrum (plmm-1) of the three algorithms, at the iteration number of 200, are presented in Fig. 10. 
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Figure 10: MTF (f) of the three different algorithms, at the iterative number of 200 

 

 

From Fig. 10, the MLEM algorithm presents a better spatial resolution in all the frequency spectra, 

compared to the other algorithms. The maximum spatial resolution of the system is measured at 

10% of the MTF; in other words, the spatial resolution is calculated by the inverse of the frequency 

in 10% of the MTF. Thereby, the resolution for SIRT, MLTR and MLEM is about 2.86 mm, 2.75 

mm and 2.70 mm, respectively.  

Fig. 11 shows the area under the curve of the MTFs obtained for all iterative number of the three 

algorithms.  
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Figure 11: Area under the curve of the MTFs by the number of iterations 

 

 

Fig. 11 shows that MLEM presents a better spatial resolution for all iterative numbers compared with the 

other algorithms. It is possible to observe, as well, that for the MLEM and the MLTR around 100 iterations, 

the spatial resolution reaches its optimum value and it maintains constant as the iteration numbers rises. This 

fact suggests that, for these two algorithms, the iterations could stop at 100, where the spatial resolution 

reached a higher value, reducing the time of reconstruction and avoiding the growth of noise, as observed in 

figure 9. 

 

4. CONCLUSION 

 

The results of RMSE values showed that the MLEM algorithm converges and approaches to the theoretical 

values with a lower number of iterations, compared to the other two algorithms, evidencing that this algo-

rithm has a better image quality.  

The CNR analysis showed that MLEM and MLTR algorithms reach a higher CNR value, but the number of 

iterations does not rise as the same, due to the growth of noise, different from the SIRT algorithm, that 

reaches a lower CNR value, but it decreases less than the others, what means that the noise has less influence 

on the images reconstructed by the SIRT algorithm than those by the other two algorithms. 

The spatial resolution value obtained with SIRT, MLTR and MLEM algorithms is 2.86 mm, 2.75 mm and 

2.70 mm, respectively, which means that the MLEM has a better spatial resolution.  
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The area under the curve of the MTFs for all number of iterations showed that at around 100 iterations, the 

spatial resolution for MLTR and MLEM reaches its optimum value, which means that for these two algo-

rithms the iterations could stop at this value reducing time of reconstructing and avoiding the growth of 

noise. The SIRT algorithm has worse spatial resolution, and did not get its optimum value, suggesting that 

this algorithm has to keep iteration until reaches the optimum value.  

For all the analysis measured, the MLEM showed to be a better algorithm to be applied on the systems of the 

third generation industrial tomography. 
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