Determination of 93Zr in radioactive waste from nuclear power plants using Inductively Coupled Plasma Mass Spectrometry

T. C. Oliveiraa; R. P. G. Monteirob; A. S. R. Júniorb; G. F. Kastnerb; A. H. Oliveiraa

a Departamento de Engenharia Nuclear, UFMG/DEN, 31270-901, Belo Horizonte, Minas Gerais, Brazil

b Centro de Desenvolvimento da Tecnologia Nuclear, CDTN/CNEN, 31270-901, Belo Horizonte, Minas Gerais, Brazil

oliveiratco2010@gmail.com

ABSTRACT

The zirconium isotope 93Zr is a long-lived pure β-particle-emitting radionuclide produced from 235U fission and from neutron activation of the stable isotope 92Zr and thus occurring as one of the radionuclides found in nuclear reactors. Due to its long half-life, 93Zr is one of the radionuclides of interest for the performance of assessment studies of waste storage or disposal. This paper describes the determination of 93Zr in evaporator concentrate (EC) sample from nuclear power plant (PWR). A zirconium selective separation using liquid-liquid extraction and TRU column were used before the ICPMS measurement to remove isobaric interferences. 20,21Nb detection limit of 0.045 μg L$^{-1}$ was obtained for 93Zr determination by ICPMS technique.

Keywords: Zirconium; Evaporator Concentrate waste; TRU; ICPMS
1. INTRODUCTION

The long-term risk related to the disposal of low level radioactive wastes produced by Pressurized Water Reactor (PWR) nuclear power plants (NPP) is determined primarily by the presence of the long lived nuclides.1,2 The zirconium isotope 93Zr is a critical radionuclide for the low-level wastes (LLW) and intermediate-level wastes (ILW) disposal. It is a long-lived pure β particle emitting, with a maximum energy of 60 keV and a half-life of 1.61×10^6 years.3 It is produced by nuclear fission and neutron activation of 92Zr stable isotope that is a constituent of the structural components of nuclear reactors. After 1000 years, 93Zr is the second contributor, after 99Tc, of the fission products activity.4 The control of long half-life radionuclides in waste packages is necessary to insure compliance of waste acceptance criteria, which have been formulated in order to avoid any potential impact of the radio contaminants on the environment of the repository site.1-5

According to the literature, the chemical behavior of zirconium is very complicated regarding the ionic species present in aqueous solutions and the possibility of hydrolysis, polymerization and coordination reactions, strongly depends on physical-chemistry conditions of the zirconium solutions.6 The chemical form and oxidation state of 93Zr is very important for its separation from others pure β-particle- and $\beta-\gamma$- emitting radionuclides present in the LLW and ILW samples such as 54Mn, 55Fe, 60Co, 63Ni, 65Ni, 65Zn, 90Sr, 90Y, 94Nb, 133Ba, 137Cs, 152Eu and 241Pu when using Liquid Scintillation Counting (LSC) measurements.7

In the Inductively Coupled Plasma Mass Spectrometry Technique (ICPMS) the most serious complication are often isobaric interferences leading to increased background count rates and degraded detection limits and resolutions. When measuring by ICPMS, liquid-liquid extraction and chromatography extraction can be used for isobaric interference reduction, mainly due to 93Nb, 93mNb, 93Mo nuclides.

Other techniques used for this kind of measurements are Thermal Ionization Mass Spectrometry (TIMS) and Multiple Collector-Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) which also requires a selective separation for the isotope to be studied.8-9
Chemical separations are always needed and especially when working with waste samples from nuclear power plants due to its very complex chemical and radiochemical characteristics.

Over the last decade, extraction chromatography (EXC) has emerged as a versatile and effective method for the separation of radionuclides from a wide range of sample types. Frequently, EXC is described as a technique that combines the selectivity of solvent extraction with the ease of operation of chromatographic methods.

Quemet et al. describe a radioanalytical method for zirconium determination based on separation and purification using UTEVA column and zirconium detection by TIMS.\(^8\)

Osváth et al. describe a combined radioanalytical method for \(^{93}\text{Zr}\) determination based on coprecipitation on iron (II)-hydroxide, separation and purification using UTEVA column and zirconium detection by ICP-MS and LSC. The results achieved were chemical yields over 65\% (using \(^{95}\text{Zr}\) tracer), limit of detection of 0.02 Bq L\(^{-1}\) and activity concentration of 0.2 and 0.8 Bq L\(^{-1}\) for two evaporation concentrates samples by ICPMS. For LSC they achieved activities below the minimum detectable activity (MDA), 0.061 Bq over a counting period of 60 min.\(^{10-11}\)

Dulanská et al. describe a simple and rapid method of \(^{93}\text{Zr}\) pre-concentration, separation and purification by using cation and anion exchange resins and zirconium detection by LSC. The results achieved were chemical yields over 76\% (using ICP-OES) and MDA of 0.01 µg L\(^{-1}\). In all analyzed samples they have not found \(^{93}\text{Zr}\) activity and all results were below MDA.\(^{12}\)

This paper presents the analytical procedure developed for the determination of \(^{93}\text{Zr}\) concentration in evaporator concentrate (EC) waste samples from Brazilian nuclear power plants - Eletrobrás Termonuclear Enterprise located in Angra dos Reis city - using extraction chromatography and quadrupole ICPMS techniques.
2. MATERIALS AND METHODS

2.1 Instrumentation

Measurements of 93Zr and its main interferences were performed with an Inductively Coupled Plasma Mass Spectrometry, Elan DRCe from Perkin-Elmer. The operating conditions to ICPMS measurements were optimized daily. The instrumental parameters used in this work are summarized in Table 1.

Table 1. Instrumental parameters for the ICP-MS

<table>
<thead>
<tr>
<th>Component/Parameter</th>
<th>Type/Value/Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nebulizer</td>
<td>Meinhard concentric glass</td>
</tr>
<tr>
<td>Spray Chamber</td>
<td>Cyclonic spray</td>
</tr>
<tr>
<td>Triple Cone Interface Material</td>
<td>Nickel</td>
</tr>
<tr>
<td>Plasma Gas Flow</td>
<td>16.0 L.min$^{-1}$</td>
</tr>
<tr>
<td>Auxiliary Gas Flow</td>
<td>0.60 L.min$^{-1}$</td>
</tr>
<tr>
<td>Nebulizer Gas Flow</td>
<td>0.89 L.min$^{-1}$</td>
</tr>
<tr>
<td>Sample Uptake Rate</td>
<td>1 mL/min</td>
</tr>
<tr>
<td>Radio frequency power</td>
<td>1200 W</td>
</tr>
<tr>
<td>Integration Time</td>
<td>1500 ms</td>
</tr>
<tr>
<td>Replicates per sample</td>
<td>3</td>
</tr>
<tr>
<td>Mode of Operation</td>
<td>Standard</td>
</tr>
</tbody>
</table>

The 95Zr and 94Nb measurements were carried out with HPGe detector 5019 with 50% relative efficiency and for 93mNb ($E_x = 16.61$ keV, $I(\%) = 6.29$ and 13.13 y half-life) and 93Mo ($E_x = 16.61$ keV, $I(\%) = 40.9$ and 4.0×10^3 y half-life) interferences measurements were carried out with Ultra-Low Energy Ge detector GU0110, both with DSA-2000 coupled to microprocessor with Genie 2 K software from Canberra, USA.13
2.2 Materials, reagents and standards

All chemicals were analytical grade. All compounds used to prepare standard solutions were initially dissolved with deionized water obtained from a Milli-Q Model (Millipore make) to form stock solutions and serial dilutions were performed to obtain the analytical concentrations required.

The resin used in the selective extraction procedure was TRU extraction chromatography material supplied by Eichrom and the Dowex resin supplied by Sigma-Aldrich. The characteristics of resins are shown in table 2.

<table>
<thead>
<tr>
<th>Table 2. Characteristics of the resins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dowex resin</td>
</tr>
<tr>
<td>Inner diameter</td>
</tr>
<tr>
<td>Bed volume</td>
</tr>
<tr>
<td>Column length</td>
</tr>
<tr>
<td>Resin particle size</td>
</tr>
<tr>
<td>Resin mass</td>
</tr>
</tbody>
</table>

Due to the 93Zr standard solutions is commonly not available in the market is necessary to use alternative procedures for its determination. In view of the similarity in ionization energies (6.63 eV for Zr and 6.76 eV for Nb) and mass/charge ratios the 93Nb standard solution supplied by NIST was used for 93 m/z mass calibration and determination of 93Zr concentration in matrices analyzed.

2.3 Preparation of 95Zr and 93Nb solution

For selective extraction procedure, the 95Zr standard solution was used to determine the recovery efficiency. The 95Zr liquid solution was obtained from irradiation of 94Zr (target nuclei), present in
zirconium pure solution from Aldrich, in a TRIGA MARK I reactor. It was used a thermal neutron flux of 8.18×10^{11} n cm$^{-2}$ s$^{-1}$ for 8 h. Zirconium isotope 95Zr is a γ emitting radionuclide, with energies of $E_\gamma = 756.7$ keV ($I_\gamma = 55.4\%$) and $E_\gamma = 724.2$ keV ($I_\gamma = 43.7\%$), and a half-life of 64.03 days [3]. The 95Zr specific activity obtained through several aliquots tested was ranged from 22 up to 59 Bq g$^{-1}$.

95Zr was used as tracer to determine the recovery efficiency of zirconium element during the selective extraction step. This tracer sample was counted on the HPGe gamma detector for 1800 seconds in a polyethylene vial containing 5 mL, positioned directly over the detector.

The 93Nb standard solution was prepared with 5 % ultra-pure HNO$_3$. An aliquot of 250 µL was taken of 9.986 mg g$^{-1}$ niobium standard solution and added to a 25 mL flask obtained a main solution of 0.1 mg g$^{-1}$. Through this main solution were prepared a calibration curve ranged from 0.2 – 200 µg/L.

2.4 Chemical purification of zirconium

After determination of zirconium recovery efficiency using the 95Zr tracer solution, the selective extraction methodology was used in evaporator concentrate samples that is one representative matrices of LLW samples. These samples were from reactor primary coolant circuit and collected at the nuclear facilities for chemical preparation and instrumental analysis. According to Rodriguez et al., this matrix is very heterogeneous and therefore it was necessary to use this procedure for the total solubilization before ICPMS analysis.18

For evaporator concentrate two different samples were collected in duplicate (about 40 g). These samples were prepared in a Pt crucible and heated using a hot plate up to evaporation to dryness. After that, 20 mL of nitric acid (p.a. 65 %) and 15 mL de H$_2$O$_2$ (p.a. 35 %) were added into the crucible. The mixture was heated again up to evaporation to dryness. The solid obtained was calcined.
in an oven at 850 °C for 4 h. The residue was dissolved and for each step after addition of acid the mixture was heated up to evaporation to dryness: first, with 30 mL of 9 mol L\(^{-1}\) nitric acid, after, with 15 mL of HF. Finally, the solid resultant was dissolved using a hot plate in 20 mL of 9 mol L\(^{-1}\) nitric acid.

The solution, 20 mL in 9 mol L\(^{-1}\) nitric acid, is passed through the Dowex column (preconditioned by passing 50 mL of 9 mol L\(^{-1}\) HNO\(_3\) solution) and passed through the column with 1 mL min\(^{-1}\) flow rate. The zirconium and other cations pass through the column except \(^{241}\)Pu if present in the sample. The column was washed with 50 mL 9 mol L\(^{-1}\) HNO\(_3\) solution. This eluate was heated to dryness and 3 mL of 4 mol L\(^{-1}\) HCl/1 mol L\(^{-1}\) AlCl\(_3\) solution was added. This solution was used for liquid–liquid extraction mixing 3 mL of 0.5 mol L\(^{-1}\) 1-(2-Thenoyl)-3,3,3-trifluoroacetone (TTA) in xylene that was carried out in a beaker under stirring for 8 min and then allowing the mixture to rest for 8 min. This procedure was repeated five times for complete extraction by TTA solution. At this step Ba, Co, Eu, Mn, Nb, Ni, Sr, Y and Fe were retained in the aqueous phase.

The zirconium present in the organic phase was back extracted into 15 mL of 0.5 mol L\(^{-1}\) HNO\(_3\)/0.5 mol L\(^{-1}\) HF aqueous solution using the same procedure of the first liquid–liquid extraction step. After that, the aqueous solution was heated to dryness and the final residue was dissolved in 3 mL of 4 mol L\(^{-1}\) HCl solution. This solution was put onto a column filled with TRU resin and passed through the column with 1 mL min\(^{-1}\) flow rate (TRU column was preconditioned for separation by passing 12 mL of 4 mol L\(^{-1}\) HCl solution). The column was washed with 12 mL of 2 mol L\(^{-1}\) HCl and this effluent was heated to dryness and taken up in a high purity 0.15 mol L\(^{-1}\) HNO\(_3\) solution.

The flowchart of the separation steps is shown in Fig. 1. The \(^{93}\)Zr was determined in the final solutions obtained after separations by ICP-MS.

After zirconium selective separation, an aliquot of the sample was irradiated to verify the presence of \(^{93}\)Nb and \(^{93m}\)Nb interferences in ICMPS analysis. This checking was done through the neutron activation with \(^{94m}\)Nb production and measurement in gamma spectrometry.
2.5 Limit of detection

The limit of detection for ^{93m}Nb and ^{93}Mo was based on Currie equations.\cite{20,21}

$$L_d (Bq/L) = \frac{2.71 + 3.29 \sqrt{t \cdot R}}{t \cdot E_{ff} \cdot Q \cdot 60}$$ \hspace{1cm} \text{EQ. 1}

where R is the count rate in cpm of the blank, E_{ff} is the counting efficiency, Q is the sample quantity and 60 is the time conversion factor, seconds to minutes.
The 93Nb limit of detection (LD) were obtained as $3\times\text{SD}_0$ of a series of ten replicate measurements of the calibration blank signal at the selected analytical masses, where SD_0 is the value of the standard deviation as the concentration of the analyte approaches 0, according to EPA Method 200.8 for the analysis of drinking waters.22 We associated 93Nb LD to the 93Zr LD.

3. RESULTS AND DISCUSSION

The results shown are the average of duplicate results obtained with the analytical methodology established by using ICPMS technique and the limitations and advantages of this analytical route are discussed.

For zirconium determination by ICPMS, a set of tests was carried out on standard samples solution containing known quantities of 95Zr in order to check the efficiency and reproducibility of the separation steps. The chemical yield obtained in this work for 95Zr was over 65% when used TRU resin.23-24

After irradiation, 95Zr standard sample showed a count of 2656 cps. This tracer solution was measured before and after the extraction step in HPGe detector for the same time and geometry obtaining a final count of 1786 cps. Comparing the initial and final activities, the recovery yield of the Zr element was obtained.

As the niobium (93Nb, 93mNb) and molybdenum (93Mo) are the main interferences in zirconium determination when using ICP-MS, a sample aliquot obtained after TRU separation step was irradiated using a TRIGA Mark I nuclear reactor in order to evaluate the 93Nb presence through 94mNb, that is an activation product, using gamma spectrometry measurement. The limit detection (LD) for 94mNb was $9.59 \times 10^{-4} \text{ Bq g}^{-1}$ ($8.12 \times 10^{-14} \mu \text{g L}^{-1}$). For the evaporator concentrate samples analyzed the results obtained were below the LD. The values obtained by Osváth et al was $6.3 \times 10^{-4} \text{ Bq g}^{-1}$ ($5.34 \times 10^{-14} \mu \text{g L}^{-1}$) after radiochemical separation.10

Another sample obtained after TRU separation step were used for the 93mNb and 93Mo interferences evaluation. The X-ray photopic for these radionuclides weren’t observed after low energy gamma
spectrometry analysis. The limit detection for 93mNb and 93Mo was 3.89×10^{-6} Bq·g$^{-1}$ (1.09×10^{-7} μg L$^{-1}$).

The 93Nb limit of detection (LD) was 0.045 μg L$^{-1}$ and we associated 93Nb LD to the 93Zr LD.

A final set of tests was carried out with two EC samples and their 93Zr concentration are showed in table 3.

<table>
<thead>
<tr>
<th>Samples</th>
<th>93Zr concentration (μg g$^{-1}$)</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC 1</td>
<td>0.09</td>
<td>0.03</td>
</tr>
<tr>
<td>EC 2</td>
<td>0.93</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Figure 2 shows the ICP-MS spectrum of 93Zr waste solution after separation steps.

This spectrum refers to the selective extraction using Dowex and TRU resins and TTA solution. In this figure we can observe the peak referring to mass of 93Zr.

Figure 2 – ICP-MS spectrum of 93Zr waste sample after separation steps
4. CONCLUSION

Analytical methodologies have been proposed for 93Zr determination in low level radioactive waste, evaporator concentrate samples, by ICP-MS technique.

For ICP-MS analysis a protocol was developed for chemical separation steps based on 95Zr tracer and the recovery yield obtained was better than 65% which was also observed by Osváth.11

The 93Nb utilization as a reference isotope for 93Zr determination by ICP-MS is one option for calibration and simulation analysis in view of their similarity in ionization energies and mass/charge ratios.

The possible interferences caused by 93Nb, 93mNb and 93Mo mass/charge ratio were investigated using nuclear techniques in order to evaluate the results of separation methodologies adopted in this work.

Finally, the results obtained, considering the sensitivity of ICP-MS technique, were above the limit of detection calculated and they were very close to values obtained by Osváth.10

5. ACKNOWLEDGMENT

The authors are very grateful to Eletrobrás Termonuclear and CDTN for its collaboration and to work supported by CAPES.
REFERENCES

2. IAEA Nuclear Energy Series, Determination and use of scaling factors for waste characterization in nuclear power plants, IAEA, Vienna (No. NW-T-1.18), 2009.

