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ABSTRACT 

Attenuation coefficients are essential physical parameters for many applications, such as the calculation of photon 

penetration and energy deposition to evaluate biological shielding. Estimating these parameters is complex, making it 

necessary to apply more sophisticated methodologies. The objective of the present study was to propose a model for 

estimating the attenuation coefficients using artificial neural networks. The NIST database was used to estimate the 

attenuation coefficients in terms of energy and atomic number from a regression problem using two approaches: the 

proposition of an automated model using the framework Talos and a manual model using Keras. The characteristics of the 

best model proposed in Talos were applied in manual training via Keras with cross-validation to evaluate the learning 

curves. The following were also assessed: the comparison of the curves of the attenuation coefficients predicted by the model 

compared with the reference data and the general comparison of the vectors X and y of the two models discussed. The Talos 

framework reference model obtained the following values of Loss and MSE error metric: 0.13 and 0.037, respectively. The 

best model of the manual approach received the following results: 0.19 and 0.08 for the loss function and MSE error metric, 

respectively. The absolute percentage error (MAE) of the difference in the results between the two models was: 0.065 and 

0.044 for the Loss and MSE metrics. Despite applying two distinct propositions, both models had the same difficulties in 

predicting discontinuities in the physical behavior associated with the attenuation coefficients. 

Keywords: Mass attenuation coefficients, neural networks, deep learning. 
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1. INTRODUCTION 
 

Since the discovery of X-rays to the present day, numerous applications associated with this type 

of radiation have been evaluated and improved. In the context of using X-rays as a diagnostic and 

medical treatment tool, it was found that the number of photons absorbed and transmitted from the 

interaction of X-ray with human tissue can be theoretically evaluated from the analysis of two key 

attenuation coefficients, namely the mass attenuation coefficient (𝜇𝜇/𝜌𝜌) and the mass absorption 

coefficient (𝜇𝜇𝜇𝜇𝜇𝜇/𝜌𝜌) [1]. These coefficients are crucial for characterizing the penetration of radiation 

into a medium and understanding how X-rays interact with matter [2]. 

Hubbell (1982) established a formalism for defining the attenuation coefficients based on the 

Lambert-Beer Law. According to the author, a narrow, monoenergetic beam of photons is attenuated 

to intensity I from an incident intensity 𝐼𝐼_0, passing through the thickness of material x, following an 

exponential decay [3].  

The first comprehensive analysis of mass attenuation coefficients was provided in Report 33 by 

the International Commission on Radiation Units and Measurements (ICRU). According to ICRU 

Report 33, the mass attenuation coefficient is defined as the ratio of the linear attenuation coefficient 

to the material density. It is expressed in units of cm²/g and quantifies the probability of attenuation 

per unit length traveled by ionizing radiation within a given material [4]. In the realm of estimating 

mass attenuation coefficients, various models have been explored in the scientific literature [1-8]. 

These models typically employ a semi-empirical approach, combining experimental and theoretical 

insights to overcome the limitations of purely experimental models. The challenge lies in estimating 

attenuation coefficients across a broad spectrum of energy levels, given the diverse range of materials 

utilized in practical applications [9]. Other approaches have also proposed models to determine the 

attenuation coefficients using Monte Carlo Simulations, which sometimes required extensive 

computational processing times [10-11]. 

Despite the diversity of methodologies used to derive attenuation coefficients, the models 

established by the National Institute of Standards and Technology (NIST) have emerged as standard 

references [9-16]. NIST's models are acclaimed for their sophisticated theoretical calculations, 

providing estimates for different energy intervals [4, 17]. However, they come with inherent 

limitations. Notably, NIST data offer coefficients at discrete data points, resulting in substantial 
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intervals between these points. Consequently, some applications necessitate more explicit models, 

such as the indirect method for estimating spectra, which entails calculating the derivative of μ [18]. 

An illustrative example of an alternative model can be found in the work of Manjunatha et al. 

(2017), designed to estimate mass attenuation coefficients across a wide energy range spanning from 1 

keV to 20 MeV. The approach involves fitting empirical equations that establish a robust relationship 

between mass attenuation coefficients and energy, encompassing elements from Z = 1 to Z = 92. To 

enhance precision, the authors further segment the energy range into sub-regions, meticulously 

selecting polynomial functions that deliver the optimal fit within each specific region [8]. 

In the context of machine learning algorithms have proven valuable, especially in cases of 

nonlinear regressions. Therefore, the analysis of complex physical parameters using machine learning 

algorithms has gained traction [9]. Consequently, numerous applications to model the physical 

properties of materials have been proposed in the literature, demonstrating the potential of  machine 

learning techniques in this field [12-15].Machine learning encompasses a wide spectrum of 

techniques and models, ranging from conventional approaches to the cutting-edge realm of Deep 

Neural Networks (DNNs). 

 DNNs, characterized by their intricate multi-layered architecture, represent the pinnacle of 

machine learning capabilities, enabling the discovery of intricate patterns and relationships within 

data that were previously challenging to discern. These networks have revolutionized fields such as 

image recognition, natural language processing, and data analysis, making them a cornerstone of 

modern AI applications. 

Few studies [3,9,16,20] have explored NIST data to develop other applications involving machine 

learning such as the proposition of artificial neural networks. Furthermore, some of these [9,16] 

studies used specific energy ranges or estimations of attenuation coefficients for specific materials. 

Thus, proposing a model that estimates the attenuation coefficients from a DNN that covers all atomic 

numbers and the energy range proposed by NIST is necessary.  

One significant advantage of employing deep neural networks (DNNs), as opposed to traditional 

Monte Carlo-based models, lies in computational efficiency, as demonstrated by the following 

example. Consider a Monte Carlo-based code, called TASMIC, designed to calculate photon fluence 

within the energy range of 20 keV to 640 keV. This conventional approach demands extensive 
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computational resources, typically exceeding 5,000 hours of simulation time to yield results [12]. In 

contrast, the DNN method, represented here by Talos, accomplishes the same task in a mere 6.5 hours. 

This substantial disparity in computational time underscores the efficiency gains associated with 

the utilization of DNNs. It highlights a pivotal motivation for this study, namely, the pressing need 

for a more time-efficient approach to estimating attenuation coefficients. Moreover, conducting a 

comparative analysis between the outcomes generated by this neural network-based method and those 

from traditional Monte Carlo models can offer valuable insights into both the accuracy and 

computational expediency of the proposed approach. 

This paper aims to explore the data provided by NIST to estimate mass attenuation cofficients �𝜇𝜇
𝜌𝜌
� 

for X-ray beams from a regression problem in a DNN. The research contributes to the broader fields 

of medical radiology and materials science by potentially improving the accuracy and efficiency of 

these coefficient estimations through the application of deep learning techniques. The proposed DNN-

based method has the potential to reduce computational resources and time while maintaining or 

enhancing precision. The study comprehensively analyzes various metrics, including loss functions, 

validation, number of folds, and learning curves, to assess the model's effectiveness. The subsequent 

sections will provide detailed insights into the methodology, results, and discussions, shedding light 

on the advantages offered by this approach. 

2. MATERIALS AND METHODS 
 

The implementation of the neural network was done in Python language, from prototyping via 

Keras and using the framework Talos for automatic adjustment of the initial hyperparameters and 

subsequent manual training to evaluate the training curves. Other libraries such as Tensor Flow, Scikit 

Learn, Numpy, and Matplotlib were used to analyze and evaluate model metrics. 

The methodology of this study involves the implementation of neural networks using two distinct 

approaches: the utilization of Keras, an API designed for rapid experimentation with deep neural 

networks, known for its ease of use, modularity, and extensibility; and the Talos framework, which 

revolutionizes the conventional deep learning workflow by automating hyperparameter tuning and 

model evaluation [13].  
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2.1. Pre-processing of the dataset  

 

The definition of the dataset involves using numerical data from NIST tables. These numerical 

data consist of values of attenuation coefficients in the function of the energy for x-ray beams and the 

attenuation material (in terms of atomic number Z from Z = 1 to Z = 92). Although the NIST tables 

contain various parameters, such as mass attenuation coefficients, mass absorption coefficients, 

parameter Z/A, compounds, and mixtures, conventional DNN training allows the model to output 

only one parameter at a time. Therefore, mass attenuation coefficients were chosen as the analysis 

parameter for this study. This choice was motivated because the authors were in search of an 

alternative model to estimate these mass attenuation coefficients for another application [14] of the 

indirect method of obtaining the X-ray spectrum [21]. 

To import the NIST tables, we used the library Physdata of Python. The Physdata consists in a 

module that imports a package with all the tables of NIST in a simple and rapid format. The data from 

Physdata are organized in a Data Frame from the library Pandas. After importing the tables and 

adjusting these tables in Data Frame, the Data Set had a total size of 4479 lines, with four columns: 

Energy (in MeV), mass attenuation coefficients �𝜇𝜇
𝜌𝜌
�, mass absorption coefficients �𝜇𝜇𝜇𝜇𝜇𝜇𝜌𝜌 � and the atomic 

number from Z = 1 to Z = 92.  

So that the input data for training the model could be created from the defined Data Frame, it was 

necessary to include the fourth column, related to the elements of atomic number Z. This step was 

required because there was no available function of Physdata that would print the attenuation 

coefficients for different ranges of atomic number Z. In this way, a loop structure was defined that 

would scan the library function over the entire range of Z and then from the Pandas concatenation 

function (pandas.concat) joins all the values into a single table. The table 1 shows the format of the 

dataset after the manipulation described above. The dataset had a total size of 4479 lines.  
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Table 1: The Dataset structure. 

 Physical parameters 

Energy (MeV) �
𝜇𝜇
𝜌𝜌
�  (𝑐𝑐𝑐𝑐²/𝑔𝑔) �

𝜇𝜇𝜇𝜇𝜇𝜇
𝜌𝜌 � �𝑐𝑐𝑐𝑐2/𝑔𝑔� Z 

0.0010 7.21700 6.82000 1 

0.0015 2.14800 1.75200 1 

0.0020 1.05900 0.66430 1 

0.0030 0.56120 0.16930 1 

0.0040 0.45460 0.06549 1 

... ... ... ... 

6.0000 0.04583 0.2829 92 

 

After manipulating the dataset from the Data Frame definition, the neural network inputs were 

defined. Thus, the Energy (MeV) and Z columns (Table 1) were used as input data for the neural 

network to estimate the mass attenuation coefficients. The last step of processing the data set was to 

adjust the axes on a logarithmic scale. This step was necessary because the energy ranges of the NIST 

tables are extensive, and this difference could hurt the regression results.  

2.2. Analysis metrics  
 

In this work, two metrics were employed to quantitatively evaluate the results. The first metric 

used to validate all discrepancy analyses in this study was the Mean Absolute Error (MAE) and the 

Mean Squared Error (MSE), which are commonly utilized measures to assess the performance of 

prediction models or data fitting.  

MAE is calculated as the mean of the absolute differences between the measured values and the 

values predicted by the model, while MSE is calculated as the mean of the squared differences 

between these values. Both MAE and MSE are widely used metrics in deep learning to gauge the 

accuracy and performance of models. 

 

The mathematical definitions of MAE and MSE are as follows: 
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𝑀𝑀𝑀𝑀𝑀𝑀 =

1
𝜇𝜇
�|𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�|
𝑛𝑛

𝑖𝑖=1

 
 

(1) 

 

 

 
𝑀𝑀𝑀𝑀𝑀𝑀 =

1
𝜇𝜇
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2
𝑛𝑛

𝑖𝑖=1

 
 

(2)  

Where: 

• (𝜇𝜇) is the total number of samples. 

• (𝑦𝑦𝑖𝑖) represents the observed value for sample (𝑖𝑖). 

• (𝑦𝑦𝚤𝚤�) represents the predicted value by the model for sample (𝑖𝑖). 
 

 

2.3. Adjust of hyperparameters of training with Talos framework  
 

The training method based on Talos involves the performing distinct steps: definition of 

hyperparameters dictionary; experiment setup in Talos via association with the model in TensorFlow 

Keras; evaluation of the experiment and choice of the best model to from the analysis of previously 

selected metrics (loss function) and other chosen error metric in regression [24]. In the dictionary 

definition, the network architecture with the hyperparameters and the number of layers are predicted.   

The study encompasses key hyperparameters and parameters essential for deep learning models. 

Hyperparameters, including the loss function, error metric, activation functions, and optimizers, play 

pivotal roles in training neural networks. Node parameters, represented by the first to fourth hidden 

layers, enable the network to capture complex patterns, hierarchical representations, and intricate 

patterns in the data. The Dropout technique helps prevent overfitting, while batch size impacts model 

convergence and memory usage. For more in-depth information on these parameters, refer to Chollet 

et al. (2021) [25]. 

Table 2 shows the selected parameters for the Talos experiment. The Talos model combines all 

hyperparameters and hidden layers in the experiment setup. To facilitate the posterior migration of 
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the model to the second training with TensorFlow Keras, the input layer and the output layer were 

selected in fixed form, without the variation of these parameters. In other words, the experiment tested 

the parameter variation only for the hidden layers. According of Table 2, the error metrics selected 

for the loss function were the MAE and the MSE.  For the analysis of error metrics, MSE is selected. 

 

Table 2: Dictionary parameters of Talos experiment 
 

Hiperparameters dictionary Values 

Learning rate 0.001 

Batchsize [2000] 

Number of epochs [400] 

Loss function [‘MAE’, ‘MSE’] 

Error metric [‘MSE’] 

Activation function 1 [‘relu’, ‘elu’] 

Activation function 2 [‘sigmoid’] 

Optimizers [‘ADAM, ‘RMSprop’] 

  

Node parameters Attributes 

Layers type Dense  

Input layer nodes 2 

Output layer nodes 1 

First hidden layers [4,7,12,24,48,64] 

Second hidden layers [2,4,6] 

Thirds hidden layers [5,6,7] 

Fourths hidden layers [1,4,7] 

 

Talos can be applied with any Keras model without changing the model and without having to 

structure a new syntax [24]. However, some adjustments need to be made for the case of a model that 

was previously defined in TensorFlow Keras, involving the following steps: 
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1. Addition of the input parameters in the dictionary to the model function; 

2. Replacement of hyperparameter entries defined in Talos by references to the dictionary 

of parameters described in table 2; 

3. Check if the model is storing the historical object; 

4. Modifying the model output. 

Figure 1 shows a summary of the implementation steps in Talos. After the dictionary definition 

and the model function, the experiment is started from the Scan reading object. The input parameters 

of the digitization project are X and Y parameters of the model input, the name of the model function 

defined in the previous step, and a name for the experiment. each adjustment attempt of the model in 

the experiment is called a round and the the number of rounds depends on the number of nodes defined 

in each attribute of the dictionary and the number of epochs defined. 
 

Figure 1: Implementation steps of model in Talos framework 

 
 

After the Scan step, the experiment results are stored per round without a corresponding log, 

whose format is a .csv file stored in the job. Thus, to access and evaluate the model, the Reporting 

object is used. Such an object returns a Scan report performed, and the results can be accessed from 

doing analysis. From reading, the experiment's measurements, the model can be evaluated with the 

Evaluate. This Evaluate process involves an analysis of the experiment with K-folds cross-validation. 

Once the correct model is found, the next step is to create a package of deployment with the Deploy 
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object. This package can be easily transferred to other environments. The best is easily chosen from 

the choice of best metric, being the most usual for the problems of measurement is the validation of 

the chosen error metric is a (val_metric).  

The Deploy package is a compacted file, which contained: the details of the Scan object model 

weights, the model in JSON, the results of the former experiment and samples of the X and y data. 

To access Deploy package data, you need to use the object Restore. The Restore object consists of 

the object's assets Scan associated with the experiment, with the chosen model. With this object, the 

best model can be used to make predictions in any form to use the model objects Keras [21]. 

2.4. Manual training with Keras  
 

In this step, the architecture, the hyperparameters of the best model proposed in the Talos 

experiment, and the error metrics that best fit were selected for manual training via Keras. In this 

approach, the best model is understood to have the lowest rates for the loss function and error metrics. 

The Talos Reporting object, described in Figure 1, was used to select the information from this 

reference model. 

In this way, the parameters of the Talos reference model (Table 2) were applied in a training 

manual via Keras with the cross-validation method. Cross-validation is a valuable technique for 

assessing the performance of machine learning models. It serves the purpose of comparing and 

selecting the most suitable model for a given predictive task, offering advantages such as lower bias 

and ease of implementation.  

One commonly used variant of cross-validation is k-Fold cross-validation, where 'k' represents 

the number of partitions into which the dataset is divided. In many cases, 'k' is set to either 5 or 10, 

but it can vary based on dataset characteristics. In this methodology, the dataset is partitioned into K 

equal-sized segments. Within each segment (referred to as i), a model is trained on the remaining K 

– 1 segments, and its performance is assessed on segment i. The final score is computed as the mean 

of the K scores acquired. This approach proves advantageous when the model's performance exhibits 

notable variation across different train-test splits. It's important to emphasize that, similar to hold-out 

validation, the utilization of K-fold cross-validation does not eliminate the necessity for a distinct 

validation set, which is still required for model calibration. Figure 2 visually outlines the K-fold cross-

validation process, and Listing X offers a straightforward implementation example [25].   
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Figure 2: Cross-validation method 

 

 
Source: Pedregosa et al (2011) 

 

 In this particular study, a k value of 10 was employed, meaning the dataset was divided into ten 

equal parts or folds. For this approach, the database was split into two sets: 75% of the data for training 

and validation, and the remaining 25% for testing and the final evaluation of the model. The algorithm 

then trained and validated the model on each of these folds iteratively, ensuring comprehensive 

evaluation and averaging the results to obtain the final score. This approach helps mitigate issues 

related to variance in model performance during the train-test split and contributes to a robust 

assessment of model efficiency. 

The analysis of the neural network's results involved evaluating attenuation coefficients for four 

specific materials: Beryllium (Z=4), Aluminum (Z=13), Copper (Z=29), and Tungsten (Z=74). These 

materials were chosen based on their relevance in the context of medical radiology, particularly in X-

ray applications. The study focused on these specific elements to assess the network's performance 

in predicting mass attenuation coefficients for materials commonly used in radiological applications. 
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The results obtained from the neural network were compared with available reference NIST data. 

This comparison was conducted using a discrepancy analysis to quantify the differences between the 

neural network predictions and the reference data. The criteria for this comparison included metrics 

such as Mean Absolute Error (MAE) and Mean Squared Error (MSE) to assess the accuracy and 

performance of the neural network in predicting mass attenuation coefficients for the selected 

materials. The goal was to evaluate how well the neural network's predictions aligned with established 

reference data for these materials commonly used in medical radiology contexts. 

 
Table 3: Talos reference model parameters selected 

 
 

Hiperparameters dictionary Values 

Loss function MAE 

Error metric MSE 

Activation function 1 ELU 

Activation function 2 SIGMOID 

Optimizers RMSprop 

  

Node parameters Attributes 

First hidden layers 48 

Second hidden layers 4 

Thirds hidden layers 6 

Fourths hidden layers 7 

DropOut 0.20 

Batch Size 2000 

Epochs 400 

 

 

3. RESULTS AND DISCUSSION 
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The experiment using Talos (based on the parameters defined in Table 3) lasted about 6.5 hours. 

Table 4 shows results for the best model metrics obtained with the Talos experiment, that is, the one 

that obtained the lowest values for the loss metrics (MAE) and the MSE metric.   

 

Table 4: Results of best model in Talos experiment 
Metrics Values 

Loss function 0.1346 

MSE 0.0374 

Loss validation 0.1364 

MSE validation 0.0414 

 
The results of manual training via Keras for the cross-validation approach, separated per fold are 

found in table 5, and the learning curves, separated by metric and the number of folds are shown in 

figure 3.  

 

Table 5: Loss function and MSE per fold 
Fold Number  loss function MSE 

Fold 1  0.203  0.090 

Fold 2 0.209 0.087 

Fold 3 0.206 0.089 

Fold 4 0.199 0.081 

Fold 5 0.206 0.086 

Fold 6 0.202 0.087 

Fold 7  0.203 0.088 

Fold 8 0.208 0.085 

Fold 9 0.206 0.088 

Fold 10 0.213 0.090 
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Figure 3: Learning curves for: (a) loss (training) vs epochs per fold  (b) loss (validation) vs epochs 
per fold (c) MSE (training) vs epochs per fold (d) MSE (validation) vs epochs per fold 

 
 
 

Figure 4 shows the graphic comparison of the physical behavior for the atomic numbers defined in 

the data in the Talos experiment. And figure 5 shows the general comparison between the X and y 

vectors of the data measured against the predicted information for the training set and for the test set in 

the best result model. A visual analysis of figure 5 demonstrates a consistency concerning the highest 

volume of the training data (75% of the database) compared to the test data (25% of the test data).  
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Figure 4: Predicted and measured comparison: (a) Beryllium (Z=4) (b) Aluminum (Z=13), (c) 
Copper (Z=29) (d) Tungsten (Z=74). 

 
Figure 5: General Predicted and measured comparison. 
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Regarding the analysis of the models, the best result for training via cross-validation was achieved 

by fold 4. Examining the table reveals discrepancies between the results of manual training with 10-

fold cross-validation and those obtained through training with Talos. A comparison between tables 4 

and 5 leads to the conclusion that the Talos-based training approach, without the inclusion of the 

cross-validation process, yielded the lowest values for the error metric defined for the loss function. 

 For Loss Metric, the value of MAE is 0.065 and for MSE metric, the value of MAE is 0.044, 

demonstrating that the most significant absolute average error occurred for the loss function metric 

(loss). The choice of this error metric to compare the result of the two models was defined in one step 

after the acquisition of results. This was because it was not expected that the application of the same 

neural network architecture and exact values of the application's hyperparameters via Talos would 

change the associated results in the transition of data from one model to the other, proposed in two 

different codes. Although these codes have been analyzed, an explanation has not been found for 

these difference results. For future studies, it becomes necessary to understand these differences better 

so that the methodology proposed in this study is reproducible in other applications. 

 It is important to clarify that these loss functions and error metrics do not have established 

reference values, as their primary goal is optimization rather than reaching specific thresholds. 

Practitioners focus on minimizing loss and improving model performance through techniques such 

as cross-validation and hyperparameter tuning.  

Furthermore, the choice of a manual training approach via Keras was in the fact that despite the 

framework Talos will provide different attributes for evaluating the action of the models trained in 

the proposed experiment, it does not allow evaluation of the training curves of these models after the 

end of the experiment, just assessing the possible rate of learning said during the training [21]. 

Thus, this condition ends up limiting the analysis these necessary curves since the follow-up to 

living off of learning rates turns out to be a chore due to the volume of data and the long access time 

that would need to be done without analysis since training via Talos takes hours to complete 

accomplished; in the case of the approach of this study, it required a 6.5-hour live follow-up.  

A visual analysis of figures 3,4 and 5 shows that the curves tend to have similar physical behavior 

in predicting mass attenuation coefficients. However, the evaluation of figure 4 demonstrates 

difficulty in predicting discontinuities associated with the data NIST reference. Even if the best 

models were selected, the network could not accurately predict these discontinuities. 
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A possible physical explanation for this behavior may be associated with the data source of the 

NIST database, which uses a semi-empirical approach, mixing experimental data with theoretical data 

to evaluate the behavior of radiation in different materials of atomic number. Such behavior, as it is 

peculiar and challenging to predict, may have caused the neural network to be unable to adjust and 

model the breaks in the orange curves (Figure 5). Yet another factor associated with the complexity 

of predicting mass attenuation coefficients may be associated with the fact that the nature of these 

phenomena is probabilistic and may make it difficult to model these parameters with the proposed 

dataset alone. 

 

4. CONCLUSIONS 
 

This study successfully introduced a promising model for estimating mass attenuation 

coefficients, paving the way for practical applications in radiation physics. However, a limitation 

arises from the constraints of conventional DNN models, which restrict the analysis to one output 

parameter at a time. This limitation prevented the examination of other vital parameters, such as mass 

absorption coefficients, compounds, and mixtures. Future research should focus on incorporating and 

analyzing these parameters in the models to achieve a more comprehensive analysis of the physical 

parameters based on NIST data. 

Additionally, it is essential to address the model's limitations further to enhance result accuracy. 

Improving the model's regression at the discontinuity points of the NIST curves and considering the 

volume of data in the dataset, along with the possibility of incorporating new physical parameters, 

are necessary steps to improve the methodology's results. Further evaluations, such as database 

balancing and the exploration of additional error metrics and loss functions, should also be pursued 

to advance the understanding of estimating mass attenuation coefficients. This work holds promise 

for practical applications and underscores the need for continuous enhancement and in-depth 

investigations in the field. 
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