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ABSTRACT 

 
Wax deposition along the extensive oilfield pipelines is a problem that affects the flow assurance. To solve it, 

one must monitor the wax formation in its initial stage. In this light, nuclear techniques are an effective 

alternative solution, as they can detect characteristics of materials or substances in an indirect and non-invasive 

manner. The present work shows a computational model using the MCNP6 (Monte Carlo N-Particle 6) code and 

the gamma radiation transmission profiling technique to detect different wax thickness. This fact is directly 

related to the attenuation of the gamma radiation beam when crossing the wax thicknesses.  
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1. INTRODUCTION 

 

Oil production in deep and ultra-deep waters has its own characteristic challenges to flow 

assurance, among which is wax deposition along the extensive production pipelines. 

This deposition occurs because waxes of high molecular weight, and thus with a higher number 

of carbons, are present in the solid phase under normal temperature and pressure conditions. However, 

in oil reservoirs, such as those in pre-salt fields, waxes are initially solubilized in the liquid phase of 

the oil in a state of equilibrium [1]. In this condition, oil temperatures range from 70ºC to 150ºC, with 

pressure greater than 2,000 psi, behaving as a Newtonian fluid [2]. But this condition changes when 

the oil is extracted from the reservoir or oil well, given that, when it is extracted and enters the 

production line, the oil starts to cool along the pipeline due to a radial temperature gradient, which 

causes heat loss to the external environment. This problem occurs more frequently in offshore 

environments, where most of the Brazilian reservoirs are located and where the ocean temperature, 

at high depths, is around 5°C. As the oil is cooled and reaches the Wax Appearance Temperature 

(WAT), the process of precipitation and subsequent wax deposition starts on the internal walls of the 

pipeline [3]. This deposition process is represented in Figure 1.  

 

Figure 1: Wax deposition process on the inner wall of the pipeline 

 

Source: Adapted from [4]. 
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As can be seen in Figure 1, the wax deposition rate is initially high, but it decreases as more wax 

is deposited on the duct surface. This is because when the wax thickness increases, it begins to act as 

a thermal insulator, reducing the temperature gradient [4]. 

In addition to the concentration of high molecular weight wax solubilized in the oil and the 

temperature gradient, other factors that influence wax deposition are oil pressure, amount of free gas 

in the oil flow, flow velocity, and pipeline surface properties [5]. 

Wax deposition causes an increase in pipeline roughness, which leads to increased friction losses, 

restricted production, and in more extreme cases, losses in the production line due to total pipeline 

plugging [6-7], as shown in Figure 2.  

 

Figure 2: Pipelines clogged by wax deposition. 

 

Source: [8]  

 

The problem of wax deposition and formation occurs in the various stages of oil handling, during 

production, transport, and refining. Moreover, in Brazil, Petrobras, internationally recognized as the 

holder of technology in exploration and production in deepwater and ultra-deepwater, often faces this 

problem in its submarine lines [1]. The problem is also a major cause of economic losses for oil and 

gas companies (such as Petrobras), which can reach millions of dollars per year worldwide through 

the enormous cost of prevention and remediation, reduced or delayed production, well closures, 

replacement and/or abandonment of pipelines, equipment failure, extra power requirements, and 

increased manpower needs [9]. 

Wax depositon 
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Traditionally, oil companies have been forced to remove wax deposits from pipelines using 

mechanical, chemical, and thermal methods, where in many cases a combination of two or more of 

these methods are employed [10]. However, such methods have always had problems and limitations, 

where research continues to be done to find the most efficient, economical, and safe methods to 

remove wax deposits and blockages [11]. 

Earlier identification of hydrocarbon deposits within oil pipelines during operation will reduce 

maintenance costs by minimizing both unnecessary pipe replacements and plant shutdown for 

inspection [12]. As oil and gas production moves into deeper, colder waters, it becomes increasingly 

imperative to properly identify wax precipitation conditions and predict wax deposition rates to 

optimize the design and operation of subsea multiphase production systems [9]. Timely location, 

measurement, and removal of wax deposits saves money for oil extraction plant operation [13]. 

In view of the above, the solution to solve the problem of wax deposition in pipelines requires the 

development of methods and application of techniques to monitor the wax formation in its initial 

stage. Many studies, methods, and techniques are found in the literature for this purpose, however 

most of them require direct contact with the pipeline structure to predict or detect wax deposition. In 

view of this, nuclear techniques present themselves as an alternative because it can detect 

characteristics of materials or substances in an indirect and non-invasive manner [14-17]. 

However, there are few studies in the literature specifically focused on wax monitoring using 

gamma radiation [5,18, 19]. Therefore, this paper aims to develop a computational model using the 

MCNP6 (Monte Carlo N-particle 6) code for wax detection in deepwater pipelines together with the 

gamma radiation transmission profiling technique.  

 

2. MATERIALS AND METHODS 
 

2.1. Gamma radiation transmission 

The penetrating power of gamma radiation into matter depends on the interaction probability or 

cross section for each type of event (photoelectric absorption, Compton scattering, pair production 

and/or Rayleigh scattering) that can absorb or scatter the incident radiation and its penetrability is 

much higher than that of alpha and beta particles [20]. 
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The attenuation of a narrow, parallel beam of monoenergetic gamma photons penetrating a thin 

plate of homogeneous material is known to follow the Lambert-Beer exponential decay law [21]: 

 

𝐼 = 𝐼0𝑒
𝜇𝑥                                                                            (1) 

 

Where 𝐼0 is the incident or initial intensity, 𝑥 is the thickness of the medium, 𝐼 is the intensity of 

the remaining beam, and 𝜇 is the linear attenuation coefficient, which expresses the interaction 

probability of the photon per unit path length in the medium. This coefficient is strongly dependent 

on the radiation energy, density, and atomic number of the medium, and is the sum of the 

contributions of several independent interaction mechanisms: photoelectric absorption, Compton 

scattering, pair production and Rayleigh scattering. 

In the case of a material composed of n layers of different elements and thicknesses, the intensity 

𝐼 of the transmitted beam is given by [20]: 

 

𝐼 = 𝐼0𝑒
−∑ 𝜇𝑖𝑥𝑖

𝑛
𝑖=1                                                                               (2) 

 

From Equation 1, the number of photons transmitted by a medium 𝐼 is given in terms of the 

number of photons without the medium 𝐼0 as [21]: 

 

𝐼

𝐼0
= 𝑒𝜇𝑥                                                                                     (3) 

 

Figure 3 shows an incident beam of monoenergetic photons from a collimated source hitting a 

detector after passing through a material of varying thicknesses. 
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Figure 3: Representation of the exponential gamma radiation transmission curve for 

monoenergetic beam 

 

Source: Adapted from [22]. 

 

 

According to Equation 3 the result should be an exponential curve of the thickness 𝑥 versus the 

relative intensity 
𝐼

𝐼0
 . However, the narrow beam configuration is referred to as good geometry and is 

rarely achieved in a realistic measurement system, as a portion of the interacting photons outside the 

beam defined by the source/detector geometry is scattered toward the detector aperture and 

contributes to the measured intensity. Whenever a significant fraction of the scattered or secondary 

photons reaches the detector, the arrangement is called a broad beam or bad geometry [21]. Because 

of this, an accumulation factor is introduced 𝐵(𝜇, 𝑥), in the following the equation: 

 

𝐼

𝐼0
= 𝐵(𝜇, 𝑥)𝑒−𝜇𝑥                                                                           (4) 

 

The factor 𝐵(𝜇, 𝑥) depends on the linear attenuation coefficient and its composition, and the 

thickness and geometry of the material in which the scattering is generated, which can be the 

shielding of the source and detector, the measurement object itself, or even the encapsulation of the 

source and detector. When there is a good geometry of the experiment, this factor is equal to 1, but 

otherwise it cannot be calculated analytically, and must be determined from experiments, 

simulations, or models [21]. 
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2.2. Gamma Radiation Transmission Profiling Technique 

This technique consists of moving a source-detector system along the cross section of a duct for 

the gamma radiation beam to scan through a pre-set step (Figure 4, left side). For each position the 

photon count or relative intensity (I/Io) is recorded. With all counts a profile graph is drawn up (Figure 

4, right side). 

 

Figure 4: Gamma radiation transmission profiling technique 

 

Source: Adapted from [15]. 

 

According to the graph in Figure 4, the relative intensity varies according to the position of the 

radiation beam, i.e., the position of the source-detector system. This is because, when passing through 

different materials, the beam will be attenuated according to the density and thickness of each 

material, as explained in section 2.1. 

Mccaw et al. [23] seems to have been the first to publish on the use of this technique in industry, 

when he used it to inspect heavy water plant towers of 8.5 m diameter and 8.9 cm wall thickness [21]. 

More recent work researched on the use of the technique can be found in the references [14-17, 24]. 

 

2.3. Monte Carlo Method and the MCNP6 

Due to its random nature, the transport of radiation through materials is a complex process that is 

generally impossible to solve analytically. Monte Carlo (MC) methods simulate the random 
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trajectories of individual particles (photons) using computer-generated pseudo-random numbers to 

sample the probability distributions that govern the physical processes involved. By simulating a large 

number of histories, information can be obtained about average values of macroscopic quantities, 

such as energy deposition in predefined volumes in a radiation detector. In addition, since the histories 

of individual particles are followed, the method can be used to obtain information about the statistical 

fluctuations of particular types of events. The availability of computers with high processing power 

makes MC simulation an attractive alternative for experimental testing [21]. 

There are a variety of MC simulation codes available, but all of them have four main components 

in common: The geometry definition interface, the cross-sectional data for all the processes 

considered in the simulation, the algorithms used for radiation transport, and finally the interface to 

analyze the information obtained during the simulation [21]. 

The MCNP particle radiation transport code, which stands for Monte Carlo N Particle, is a 

general-purpose three-dimensional simulation tool that transports 37 different types of particles for 

criticality, shielding, dosimetry, detector response, and many other applications [26].  

MCNP6 version 1.0, released in May 2013, could be simply and accurately described as the 

combination of the MCNP5 and MCNPX features, but it is much more than the sum of these two 

computer codes. MCNP6 is the result of six years of effort by the MCNP5 and MCNPX code 

development teams and incorporates several new possibilities and features for computational 

simulation not found in previous versions [27].  

According to the MCNP6 manual, to perform a simulation, an input file containing all the input 

information to describe the problem must be prepared, namely [26]: 

Cell cards: where the geometry data of the problem is described, using combinations of 

predefined geometric shapes, such as planes, spheres, cylinders, etc., described on the surface card 

(described below), using combinations through Boolean operators such as intersections and unions. 

This card must also contain the materials whose compositions are on the data cards (described later) 

and their respective densities. Another piece of data that can and must be included with the cell card 

is the importance of each cell defined in the imp card. 

Surface card: where the geometric shapes to be used in the problem geometry are selected. For 

this, mnemonic characters are used, indicating the type of surface and the coefficients of the equation 

of the selected surface. 
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Data cards: where the physical data of the problem is described, composed of the following cards: 

Mode card: defines the type (or types) of radiation used in the problem, through the letters P 

(Photons), E (Electrons), and N (Neutrons). 

Material card: where the types of materials and their respective atomic compositions are defined. 

Source card: where type, energy, position, direction, and particle of the radiation source  

are defined. 

Tally card: where you define the tally type, i.e., what you want to write to the output data at the 

end of a run. 

And finally, the problem boundary, or cutsoffs, where the user-imposed limits for completing the 

problem execution, such as number of stories (NPS command), time, energy, etc., are presented. 

 

2.4. Methodology 

To achieve the objective of this work, a computational model will be used to simulate the transport 

of monoenergetic gamma photons using the MCNP6 version 1.0 code and the gamma radiation 

transmission profiling technique. Figure 5 represents the scheme of the model. 

  

Figure 5: Schematic representation of the computational model for simulation 
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In the proposed model, the seawater consists of saltwater with a 4% mass fraction of sodium 

chloride (NaCl), the same as suggested by Beserra [15] and Salgado [28] in their simulations with 

MCNP. According to Gouveia [29], for rigid pipelines installed at depths above 1,000 meters, the 

steel used is API grade X-60 or X-65, with a composition of iron equal to or greater than 95%, as 

shown in the manufacturer's catalog Tuper [30]. As shown by Beserra [15], due to this high 

percentage of iron in the steel, for simulation purposes in the MCNP, it is feasible to adopt only this 

element as the steel composition. The choice of oil is in accordance with Thomas [31], according to 

which the oils obtained from different petroleum reservoirs have different characteristics, however, 

they all produce similar elemental analyses. In view of this, Texas crude oil will be used, considering 

the publication of the chemical composition data of this oil [32]. Waxes are alkanes whose general 

formula is CnH2n+2 [31]. Dobbs [33] reports that the hard crystalline waxes have 25 to 50 or more 

carbons in the chain. In view of this, the wax C25H52 contained in reference [32] will be considered. 

To validate the computational model to be used, the experimental data reported by Oliveira et al. 

[17] will be used. Among the four graphs presented by the authors, one identified the presence of a 

barium oxide (BaSO4) scale on the internal walls of an 18" (450 mm) diameter and 40 mm thick duct 

used in the petroleum industry. About the experiment, the authors reported that the profiling in the 

duct was performed in 5 mm steps, with no overlap between inspection points, and that the detector 

recorded the radiation intensity point by point, according to the thickness penetrated in the duct chord. 

With that, they obtained an intensity profile related to the position of the scanning system. For each 

point, the acquisition time was 60 s. The results showed that the duct was empty (or filled with air) 

and contained a 21 mm thickness of BaSO4 scale.  However, the authors did not mention the resulting 

uncertainty at each step of the profile. Figure 6 shows this plot with only the experimental data, which 

have been extracted by the WebPlotDigitizer software [34].  
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Figure 6: Profiling of a pipeline with BaSO4 scale 

 

Source: Adapted from [17]. 

 

These data will be compared with data simulated in MCNP6. In this case, both geometric 

representations and material properties reported by the authors will be used. 

The steps for the model validation are shown in Figure 7. 

 

Figure 7: Flowchart for validating the computational model. 
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Data on geometric dimensions, densities, chemical compositions of all materials involved, source 

and detector will be inserted according to information from Oliveira et al. [17]. A 662 keV pencil 

beam source - corresponding to the radioisotope 137Cs - and a 5 mm diameter cylindrical shape 

representing the detector, positioned on the other side of the duct, diametrically opposite to the source, 

will be used. For this case, the tally used will be F1 (which provides the relative intensity of photons 

arriving at the detector) and a number of 107 photon histories, which is the limit that the source 

provides to finish the simulation run. A step of 5 mm between each source-detector position and a 

fixed distance between source and detector of 460 mm will be established. For the application of the 

gamma radiation transmission profiling technique, 91 input files (one for each source-detector 

position) will be prepared and then run in the MCNP6 code to provide 91 output files, providing their 

corresponding gamma radiation relative intensity value (tally F1), as well as the related error. 

Once validated, the computational model will be used to identify the presence of wax in the inner 

walls of a pipeline located in deep water from the gamma transmission profiles for different 

thicknesses. For this purpose, a 355.6 mm (14") diameter and 35.7 mm thick pipeline will be used, 

taken from reference [29], where profiling will be done in 7.1 mm steps. 

The steps of the computational model for wax detection are shown in Figure 8. 

 

Figure 8: Flowchart of the computational model for detecting wax in a pipeline. 
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Following the flowchart presented in Figure 8, the input file will be prepared according to the 

MCNP6 user manual [25], with geometry data, materials and densities of the elements presented in 

Figure 5. The remaining data for the preparation of the input file will be as follows: 

 662 keV pencil beam source, which corresponds to the energy of the radioisotope 137Cs. 

 P-mode set for photon transport. 

 Tally F1 to provide the relative intensity of photons arriving at the detector. 

 NPS equal to 5x107 histories of photons. 

The detector is represented by a cylinder with a diameter of 5 mm, because in simulation terms 

what matters is the number of photons (or relative intensity) defined by tally F1 that crosses a flat 

surface, in this case the cylinder face. 

For the execution of the profiling technique, 25 input files will be prepared, one for each position 

along the cross section of the pipeline up to half of it, since the other half is symmetrical considering 

the concentric distribution of the wax layer. These files will be run in MCNP6 to provide 25 output 

files. From each of these files the tally result was extracted and a plot of source-detector position 

versus relative intensity was plotted, as per Figure 10. To highlight the wax detection, profiles will 

be plotted, with the first considering the pipeline without paraffin and the others with thicknesses of 

5, 10, 20, 30 and 70% in relation to the internal radius. With this, the total number of files produced 

will be 150, both inlet and outlet. 

 

3. RESULTS AND DISCUSSION 
 

3.1. Validation of the computational model 

Figure 9 shows the curves with the experimental data from Oliveira et al. [17] and those 

simulation results in MCNP6. 
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Figure 9: Comparison between experimental and simulated data in MCNP6 

 

Figure 9 shows that there is a similarity between the graphs. However, the authors did not give 

information about the degree of uncertainty of their measurements, which makes it difficult to 

compare the experimental and simulated data in this work. Beserra [15], making use of experimental 

data from Marinho et al. [14] - who also used the gamma transmission profiling technique to detect 

BaSO4 scale in oil pipelines under the same conditions presented here - reports that the differences 

between the experimental and simulated data for an air-filled pipeline arise from the tendency of scale 

to eccentric deposition, coupled with the lack of material. 

It should be taken into consideration that the differences also occur due to the simplification of 

the computational model used to carry out the simulation, mainly in relation to scale and source. 

About the scale, the composition of BaSO4 inserted in the MCNP6 besides not predicting the absence 

of material from the experimental sample, also does not predict other factors existing in the 

environment where the experiment was performed. As for the source, in the simulations of this study 

the pencil beam type was used, while in the experiment of Oliveira et al. (2015), the collimated type. 

As analyzed by Beserra [15], the interaction of photons from a collimated source is faster on the 
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pipeline wall than the photons from a pencil beam source and this fact also contributes to the 

differences between the simulated and experimental data. 

 

3.2. Wax detection 

Figure 10 shows the simulated profiles in the computational model, according to the flowchart   

in Figure 8. 

Figure 10: Profiling the pipeline with different wax thicknesses. 
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jump [5]. This result points out that the sensibility of the model is less to the little wax thicknesses 

and higher with the increase the wax thicknesses. This is a main its limitation of the proposed model. 

 

Figure 11: Difference between the pipeline without wax and with 30% wax 
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proposed model. The main simplification is because the analyzed layer of BaSO4 was considered as 

a homogeneous and concentric layer. Did not consider the wet of air was another important 

simplification. This environmental factor and the irregularities of the sample itself contribute to the 

difference between the result and the experimental data. 
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