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ABSTRACT 
 
Proton therapy is an alternative to conventional radiotherapy, especially for treating localized tumors near im-

portant and/or sensitive parts of the human body. Protons, due to their electric charge and mass, interact with 

the propagating media in such a way that a well localized maximum - known as the Bragg peak - is observed if a 

depth dose deposition curve is plotted.  Since the Bragg peak location depends on the initial proton energy beam, 

by adjusting this parameter it can be placed over the tumor to be treated. In addition, because the dose deposi-

tion goes to zero right after this peak, the health tissue after the tumor is spared if proton therapy is adopted. 

However, despite the aforementioned advantages, many issues prevent a wider adoption of proton therapy over 

radiotherapy. In addition to the very high implementation cost, unsolved technical issues, such as, the uncertain-

ty in the proton beam range within the medium, or the correct dose prediction at the Bragg peak, must be ad-

dressed. This research aims to investigate the validity of theoretical approximations for the solution of Bethe 

equation. Such approaches are compared to results from Monte Carlo simulations, executed with the MCNPX 

code, and reference values from the literature as well for the proton beam range, the energy deposition in the 

medium, and the unrestricted LET (linear energy transfer). A parameter is proposed and adopted to quantify 

the global difference between the theoretical approximations evaluated in this work with respect to the Monte 

Carlo simulation results.  

 
Keywords: proton beam, Bethe equation, theoretical approaches, Monte Carlo simulation. 
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1. INTRODUCTION 
 

Proton therapy is a radiotherapeutic modality, originally proposed by Robert R. Wilson in 1946 

[1], that allows for a high depth dose deposition near the maximum range attained by the proton 

beam in a medium. Moreover, proton therapy has the advantage of better maximizing the dose to 

the tumor tissue and minimizing the dose to organs at risk, if compared to conventional 

radiotherapy with photons [2], as shown in Figure 1. It is worth noting that Figure 1 depicts the 

energy deposition of a theoretical proton beam, with a well-defined, low-spread initial energy 

distribution. In clinical applications, less-focused proton beams with a larger initial energy spread 

are applied to tissue, resulting in a higher entrance skin dose, an attenuation in the Bragg peak 

amplitude, as well as a less steeper decrease after the tumoral tissue. Even though these effects may 

mitigate the proton therapy efficiency for some cancer modalities, gains in therapeutic ratio [3] are 

expected if the treatment with protons is compared to the treatment with photons [4,5].  

 
 

 

 

 

 

 

 

 

 

Figure 1 - Schematic representation of depth dose deposition for a photon beam (conventional ra-
diotherapy), and two proton beams, with low and high energies, respectively. Source: Adapted from 

Liao, Lim and Zhang (2019) [6]. 
 

Assuming the typical energy range for clinical treatments, the predominant mechanisms of 

proton interaction with the medium corresponds to the Coulombian interaction with the electronic 

cloud [7]. The theory related to the energy transfer rate of a charged particle propagating in a 

material medium refers to the works of Rutherford (1909) [8], Bohr (1915) [9], Bethe (1930) [10], 

Bloch [11], remaining an active object of research [12-17]. This work aims to compare the existing 
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semi-analytical and numerical solutions for the Bethe equation, here named as the theoretical 

results, obtained by considering different approaches given in the literature. Particularly, an 

analytical form to the inverse integral exponential function is used. The predictions for the proton 

range and energy deposition of a clinical proton beam (100-250 MeV) are analyzed. These 

theoretical results are compared with reference values from ICRU-49 [18], and with Monte Carlo 

simulation results as well. In section 2, a brief introduction to the modeling of this problem is 

presented, resulting in the so-called Bethe equation. In section 3, some approaches for the solution 

of this equation are presented, particularly an analytical form proposed in this work. In section 4, a 

brief description of the Monte Carlo simulation code is presented, and in section 5 the simulation 

results are compared with the theoretical predictions. Finally, in section 6, the conclusions are 

presented. 

 

2. THE MODEL 

 
To start modeling this problem, we consider a beam particle with charge  where  is an 

integer and  is the elementary charge, which propagates in a straight line within the medium with 

velocity . In addition, electrons in the medium are assumed to be free and at rest in the laboratory 

reference frame. Then, if the smallest distance between a beam particle and an electron in the mate-

rial is given by the impact parameter , the distance  between this particle and that electron is 

given by the expression , where  is the Lorentz relativistic 

factor,  , and  is the speed of light in vacuum, as schematically represented on Figure 2.  

 
Figure 2: Schematic representation of a charged particle of mass  and total charge  with 

velocity   passing close to an electron from the medium, and  is the impact parameter [19].  Pan-
el (a) depicts the case in which the electron is at rest; In panel (b), the electron is at motion, with a 

displacement much smaller than its distance to the beam particle (x(t) << r). 
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In a collision between a beam particle and an electron at rest from the medium, as shown in Figure 

2(a), the modulus of the momentum  transferred to this electron is given by the following expres-

sion, 

 

 ,        (1) 

where  is the transverse component of the electric field generated by the particle beam [19]. 

The assumption of the electron being at rest in the collision is plausible if the beam particles are 

sufficiently faster and heavier.  From equation (1), the electron energy gain  is given by 

 

 ,             (2) 

where  is the electron mass. The divergence in eq. (2) can be removed assuming that there is a 

minimum value for the impact parameter, which can be obtained from the expression for the maxi-

mum electron energy gain, achieved for the case where the electron momentum is inverted 

( ) in the rest reference frame of the heavy beam particle, 

 

,            (3) 

and by comparing equations (2) and (3), 

 

.            (4) 

If the collision time is very long in comparison to the electron orbital period, then the electron 

will interact adiabatically with the incident particle, with no net energy transfer. This situation de-

fines the maximum value for the impact parameter,  

 

,            (5) 

where  is the electron angular frequency. Considering all electrons situated between  and 

, at a given depth  around a position  in the medium, 

 

,                  (6)  
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where n is the electron density of the medium, here assumed as uniform. Then, 

 

 ,          (7) 

which represents the energy gain by unit length of a free electron gas. However, in general, elec-

trons are not free in the target atom. Hence, in a simpler approach, this interaction could be approx-

imated by some harmonic potential plus some dissipative term. Under this condition, the electron 

can be assumed to be oscillating around a fixed position, as shown in Figure 2(b). In the presence of 

a particle from the incident beam, the electron experiences the electric field generated by such a 

particle, gaining energy according to the following expression, 

 

.           (8)  

After some additional algebraic steps, by considering the complete expression for the electric field 

generated by a relativistic charged particle, (t) [19], one finds that 

 

,        (9) 

where   is the average electron angular frequency, obtained from , 

with , where Z is the atomic number from the target atom, and  is the Euler constant 

[20]. Equation (9) was initially derived by Bohr in 1915, in its seminal work [9], and more recently 

[17], by using a distinct approach. If the beam particles are not fast enough in comparison to the 

target particles, or if the target density is sufficiently high, quantum effects need to be considered 

[11]. In particular, the minimum value for the impact parameter, , must obey Heisenberg's un-

certainty principle [21]. Considering this constraint, and following the previous derivation steps, 

one can show that  

 

,        (10) 

where  is the average excitation potential of the medium, which can be either theoretically 

derived or obtained from standard references [18, 22]. Equation (10) was initially presented by Be-

the (1930) [10], and later corrected by Born [11], in order to consider other quantum effects. As-
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suming that the electron energy gain,  corresponds exactly to the energy transferred by the beam 

particle , i.e.,  , the beam linear stopping power S is given by 

 

,           (11) 

which under this condition corresponds to the unrestricted beam linear energy transfer (LET). Since 

the mass stopping power is defined by , where  is the mass density of the medium, in 

Bethe's approach, 

 

,        (12) 

where , is the classical electron radius,  is the Avogadro's constant, 

and  is the relative atomic mass of the target atom. In this work the equation (12) is solved, by 

different approaches, for a monoenergetic proton beam propagating in a water phantom, and 

compared with Monte Carlo simulation results, and with data obtained from standard references 

[18, 22]. 

 

3. APPROXIMATE SOLUTIONS FOR THE BETHE EQUATION 
 

From the relativistic energy of a beam particle , where  is the mass of such a 

particle, it is possible to derive the energy per unit length transferred from the beam particle to the 

medium, 

 

,                 (13) 

and, if it is assumed that all this energy is transferred to the electrons in the medium, the eqs. (12) 

and (13) can be compared, such that, 

 

,            (14) 
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where , , . Assuming a proton beam, 

, pointing to the resting masses of the electron and the pro-

ton, respectively. The differential equation (14) when solved offers the proton range in the medium, 

 

,         (15) 

where (CSDA) refers to the continuous slowing down approximation, which means that the beam 

particle continuously transfers energy along its path inside the material [4]. The integral given in eq. 

(15) has no analytical solution. However, approximate solutions can be found in literature [23-24]. 

In particular, Grimes et al. (2017) [15] proposed an alternative in which, by using a series expansion 

in powers of  for the logarithm in the Bethe equation (12), the proton range can be written in the 

following parametric form, 

 

,        (16) 

with  given by, 

 

,          (17) 

and, 

 

,            (18) 

where  is the exponential integral function, 

 

.             (19) 

 Equations (16-18) present a solution for the Bethe equation, and  refers to the inverse expo-

nential integral function, to be obtained numerically [15]. In this work, by considering the asymp-

totic behavior of , 

 

 ,           (20) 
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an alternative way to determine the function  is presented by iteratively solving [25] the fol-

lowing equation,  

 

 .          (21) 

By proposing the initial ansatz  , after some iterations one can find its asymptotic 

form, 

 

 ,         (22) 

where  is a constant which allows for adjusting the theoretical initial beam energy. 

The approximation for  given by Eq. (22), labeled as “XLOGX” in the upcoming 

figures, is used to determine the proton range, and energy deposition in the medium. The same 

quantities are obtained by using the predictions of [15], labeled as “Grimes” in the upcoming 

figures, and then both approaches are compared to Monte Carlo simulation results. 

 

 

4. MONTE CARLO SIMULATIONS 
 

The Monte Carlo code MCNPX 2.7.0 [26] is used to simulate a monoenergetic beam of protons 

propagating in a rectangular phantom composed of liquid water, with average ionization potential 

, in agreement with the ICRU-49 reference [18]. A monoenergetic beam was chosen 

to match the reference [15]. The initial beam energies adopted in the simulations range from 100 

MeV to 250 MeV. The deposited energy in the phantom is detected along its central axis, with de-

tectors (tally F6) longitudinally spaced in order to cover the expected proton beam range [18]. For 

each simulation, a pencil beam of  x  protons originated from a monodirectional disk source 

propagating in a z direction. For this number of particles, the relative errors associated with the de-

posited dose are under 0.009%. To describe the transport of incident particles, the following param-

eters were used: elastic scattering for protons, pre-equilibrium model after intranuclear cascade, 

Bertini model for intranuclear cascade, and other parameters were set to their default value, accord-

ing to the MCNPX manual [26]. Although newer, enhanced intranuclear models are available [27], 
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recent works still use Bertini's model, in the MCNPX and in GEANT4 as well, to compare simula-

tion results with experimental data [28]. 

 

5. RESULTS AND DISCUSSION 
 

In figure 3, the proton beam range, obtained by using both theoretical approaches (XLOGX, 

Grimes), is compared with the reference values given in ICRU-49 [18]. The average error of the 

deviations between the theoretical and reference values are 0.07% and 0.04% for the XLOGX and 

the Grimes approximation, respectively. Regarding the computation time to generate both curves 

shown in Figure 3, while the XLOGX approximation required a computational time of 2.8 s, the 

Grimes method required 27.1 s under the same computational conditions in Mathematica 10. 

 

 
Figure 3 - Proton beam range as a function of the initial beam energy, obtained by using both 

XLOGX and Grimes approaches, through the eqs. (16)-(18), compared with ICRU-49 [18] refer-

ence values. 

 

In Figure 4, the average beam energy is plotted as a function of depth for each initial energy : 100 

MeV, 150 MeV, 200 MeV, and 250 MeV.  points to the theoretical energy predictions 

(XLOGX, Grimes) and  to the Monte Carlo simulation results (MCNPX). 
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Figure 4 - Average beam energy as a function of depth, obtained from Monte Carlo simulation re-
sults (MCNPX), compared to the theoretical predictions, obtained by integrating eq. (13) using eq. 

(17), for both XLOGX and Grimes approaches. 
 

In order to quantify the differences between the XLOGX and Grimes approaches, the following 

quantity is defined,  

 

.       (23) 

Figure 5 shows values of  calculated all along the depth, for each of the previously present-

ed simulations. 
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Figure 5 - Deviation between the proposed theoretical approaches (XLOGX, Grimes) and Monte 

Carlo simulation results (MCNPX), obtained by the parameter defined in eq. (23). 
 

From Figure 5 one can see that, for lower energies (up to 200 MeV), the XLOGX approach 

shows a lower deviation from the Monte Carlo simulation results, if compared to the Grimes ap-

proach. For the 250 MeV proton beam, although the deviation calculated for the XLOGX is initially 

lower, it grows with the depth, becoming higher than that of the Grimes approach after approxi-

mately half of the proton range. In order to better elucidate the difference between the XLOGX and 

Grimes predictions in comparison to the Monte Carlo simulation results (MCNPX), the global devi-

ation can be quantified as follows, 

 

,         (24) 

where  is analog to the statistical standard deviation for each initial energy , and  is 

the theoretical proton beam range. Figure 6 shows the values of  calculated for all investi-

gated energies, for both approaches (XLOGX, Grimes). 
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Figure 6 - Global behavior of the approximations as a function of the initial beam energy, meas-
ured by the parameter  defined on eq. (24). 

 

6. CONCLUSION 
 

Despite the nuclear interactions not being taken into account in Bethe equation, Figure 4 shows 

that the results obtained from approximate solutions of this equation, for both investigated 

approaches (XLOGX and Grimes), are in agreement with the Monte Carlo simulations, which 

include such nuclear interactions. Figure 6 shows that, for energies up to ~240 MeV, spanning the 

typical clinical energy range for proton beams, the XLOGX approach has a better agreement with 

the simulation results, providing an average total deviation of approximately 3%, while the Grimes 

approach provides an average total deviation of 5%. In addition, the computational time required to 

obtain the theoretical curves by using the XLOGX approach is approximately nine times faster than 

that required if the Grimes approach is adopted. In future works, these theoretical approaches will 

be extended for non-homogeneous media, non-monoenergetic beams, and other treatment 

modalities. In addition, the impact of using existing newer, enhanced intranuclear cascade models in 

Monte Carlo simulations will be evaluated. 
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