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ABSTRACT 

 
Currently, in almost all segments of the production chain, automation is a requirement for productivity 

improvement. With respect to nuclear facilities, active online monitoring is one of best practices for nuclear 

security and safety maintenance, to prevent incidents that could compromise a particular installation. In this 

context, spectral signature monitoring automation can be explored, aiming at the rapid identification of adverse 

events, such as radiological accidents. The main objective of this work was an automated radionuclides 

classification technique establishment, using an Artificial Neural Networks (ANN) architecture. The 

methodology used consisted basically of simulating the geometry of an established experimental apparatus, using 

the MCNP5 code, obtaining the simulated gamma spectral signature for the studied nuclides. The simulated 

spectra were used to compose the ANN training and testing data set, while the experimental spectra were 

subjected to the artificial intelligence model classification, in order to allow the neural network quality 

assessment. The final developed architecture of ANN was correct to recognize the experimental spectra of 60Co, 

137Cs and 152Eu. Therefore, the results were satisfactory and proved automation technique development viable.  

 
Keywords: Gamma Spectroscopy, Artificial Intelligence, Artificial Neural Networks. 
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1. INTRODUCTION 

 

Currently, there are constant changes in labor relations and in the productivity increase in the 

industry and services sectors, based on artificial intelligence solutions. Regarding the nuclear 

installations area, there are points that deserve attention, especially those dealing with these 

installations safety, as critical events such as leaks, radioactive elements dispersion in the 

atmosphere and even nuclear material theft may, not only compromise physical safety of a plant, 

but also exposing the public to hazardous conditions. In this context, artificial intelligence, 

especially supervised machine learning, can offer an agile way of detecting security incidents, 

allowing for quick action by the team responsible for the installation. 

The main purpose of this work is to establish an automated classification model for 

radionuclides based on Artificial Neural Networks (ANN). The basic study concept is to simulate 

the gamma spectral signature of the nuclides studied set, through the MCNP5 code, to compose the 

ANN training and tests set. Then, the model is validated with data obtained from the experimental 

survey of the spectra of some of these nuclides. 

Studies with models similar to the one proposed, using computational simulation based on the 

Monte Carlo method for ANN training, which aim at spectra classification, appear in the literature 

already in the nineties, as in the work of FUKUDA and KITAMURA [1] . In this study, the real-

time analysis of spectra was sought for nuclear safety purposes. In fact, a functional model was 

arrived at, but it was concluded that there was still a need for additional studies due to the 

incipience of the technique at the time. 

In 2005, the work of NUNES [2] used the ANN training model based on simulation with the use 

of the MCNP, for detection of landmines, based on the recognition of characteristic gamma spectra 

patterns, resulting from the activation of the materials present in the explosives by thermal neutrons. 

The result obtained shows that not only the ANN was able to recognize the patterns of the soil 

compositions where it was trained, but also acted in the identification of the presence of mines in 

situations outside this scope. 

In 2015, the work of VARLEY [3] used an ANN application, with training based on simulation 

data with the MCNP, in order to identify traces of 226Ra, resulting from military activities in the 
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United Kingdom. It is concluded that the technique provided a reliable means for estimating the 

activity of point sources and information on possible layers of soil contamination. 

Recently, in 2020, JHUNG et al. [4] used an ANN to identify gamma-emitting radionuclides 

using silicon photomultipliers. In this case, the training was carried out with experimental spectra, 

different from the spectra submitted to classification. It was concluded that the network was able to 

classify them correctly, and that increasing the depth of the network can improve the classification 

results. 

In this context, and in addition to the main proposal, the study led to the possibility of enabling a 

model that could support an alternative project to the use of detectors available on the market, 

which despite offering the functionality of spectra classification, are proprietary technology. Thus, 

the artificial intelligence model used in this work will be able to establish the pillars of a software 

that can compose the core of an industrial automation system, which, in turn, aims at the automated 

monitoring of the spectral signature of a nuclear installation.   

 

2. MATERIALS AND METHODS 

 

In order to facilitate the understanding of the various steps of the experiments carried out, this 

study was divided into two phases. The first phase consisted of defining the experimental apparatus, 

reproducing this apparatus in the computational environment of the MCNP5[5] code, comparing the 

simulated and experimental spectra of 137Cs, 60Co and 152Eu, and validating the initial configuration 

of the ANN. The second phase consisted of expanding the nuclides present amount in the training 

and testing base, and adjusting the ANN parameterization, so that it produces results consistent with 

this new knowledge base. 

The Neural Network implementation was made using the Python programming language [6], 

Keras [7] and Tensorflow [8] frameworks, used within Google's collaborative computing 

environment, Colab[9]. The main metric for monitoring the performance of the ANN versions used 

in the experiments performed was the loss function, using the cross entropy algorithm [10], with the 

accuracy function as a secondary metric. 



 Silva et al.  ● Braz. J. Rad. Sci. ● 2021 4 

 

2.1. First phase 

 

The equipment used to assemble the experimental apparatus consisted of: (i) A sealed source of 

60Co, with an activity of 7.49 kBq; (ii) A sealed source of 137Cs, with an activity of 27.76 kBq; (iii) 

A sealed source of 152Eu, with activity of 81.84 kBq (the activity of the sources on the day of the 

experiment is considered, with an associated error of 5%); (iv) a set formed by a scintillator type 

detector, NaI(Tl) and a Canberra model 802-3”X3” photomultiplier valve; (v) Ortec pre-amplifier, 

model 113; (vi) BIN Ortec, model 4001C; (vii) Ortec high voltage source, model 556; (viii) 

Canberra amplifier, model 2022; (ix) MCB Ortec module, model 926; (x) MCB cable, model DPM-

USB; (xi) Computer; (xii) ORTEC Maestro 32 R Software, version 7.01; (xiii) Amprobe multimeter 

model HD110C and (xiv) Tektronix oscilloscope model TBS1064. 

The experimental apparatus schematic geometry can be seen in figure 1.a. The colors present in 

the illustration are representative of the materials used, broken down in figure 1.b, and detailed in 

table 1. Some proportions, especially the parts of the detector with thicknesses less than 2 mm, were 

suppressed in the figure to improve the scheme visualization. Material 4, shown in figure 1, is 

decomposed into other 3 materials in table 1, representing the composition of a 1 mm thick 

Neoprene disc (material 4.b) and a polyethylene disc (material 4.c) of 0.15 mm, plus a 0.5 mm layer 

representing the detector Aluminum case (Material 4.a). The construction details of the detector 

were based on the detector schematic diagram (MIRION [11]) and on the work of MEDEIROS 

[12]. The uncertainty associated with geometric measurements is 0.1 mm. 
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Figure 1: a) Schematic view of the apparatus geometry; b) Representation of the materials used in 

the apparatus, detailed in table 1.  

 

The experimental spectra obtained were used in the calibration of the detection system, with the 

variability of the uncertainty associated with the count statistics being within acceptable limits 

(given by n1/2 / n, where n is the counts number of a given spectrum, in the region that forms the 

Gaussian of each of its photopeaks). After the experimental survey of the 137Cs, 60Co and 152Eu 

spectra, the experimental apparatus was reproduced within the computational environment of 

MCNP5. 

The simulation was performed on a computer with an Intel(R) Core(TM) i7-8700 3.2 GHz 

processor (6 physical cores and 12 logical cores), with 8 Gb RAM memory installed, running 
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Windows 10 Home operating system 64-bit. In the simulations, 385 million stories were used for 

each nuclide, with an average simulation time of 10 hours, using 10 cores.  

 

Table 1: Materials used in the apparatus and reproduced in the simulation (numbering illustrated in 

figure 1). The numbers in parentheses in the second column represent the percentage by mass of 

each element. 

 Material Details  

Mat. Chemical Composition/Mass Proportion (%) 
Density 

(g / cm3) 

1 Vaccum - 

2 Na (15,34) / I (84,66) 3,66 

3 Al (100) 2,69 

4.a Al (100) 2,69 

4.b H (8) / O (52) / Cl (40) 1,23 

4.c H (14,37) / C (85,63) 0,93 

5 H (8,1) / C (32,1) / O (22,3) / Si (37,5) 1,0185 

6 H (5,96) / C (49,7) / N (0,5) / O (2,74) / Mg  (0,2) / S (0,5) / K (0,2) / Ca (0,2) 0,64 

7 Pb (100) 11,35 

8 H (8,05) / C (59,99) / O (31,96) 1,19 

9 O (39,7) / Mg (60,3) 0,55 

10 O (15,64) / Si (8,1) / Ti (0,8) / As (0,26) / Pb (75,19) 6,22 

11 C (0,17) / Fe (99) / Mn (0,75) / P (0,35) / S (0,45) 1,1805 

 

 

The source was modeled in the MCNP as a fixed planar source, from a 110 mm distance of 

detector outermost wall. The data on gamma emission energies and their respective intensities for 

the radionuclides used were based on information contained in LARAWEB [13]. The simulations 

considered photons and electrons as types of particles existing in the model, and used the ENDF/B-

VI library as a cross section table. All simulations obtained a value less than 0.1 in the verification 

of counting fluctuation (Tally Fluctuation Chart) of the MCNP5 output files. 
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From the simulation model, the simulated spectra of the aforementioned nuclides were obtained, 

using the Tally F8 and the GEB function (Gaussian Energy Broadening, a function that simulates 

the energy resolution of a real radiation detector [5], using the parameters a, b and c with the 

estimated values at -9.3408 x 10-3, 7.5107 x 10-2 and 0.5843 respectively). Once the experimental 

and simulated spectra were obtained, a visual analytical comparison was performed, which 

consisted of the graphic overlay between these spectra. 

After the graphic analysis described, the spectra obtained from the simulation model were used 

as a dataset for testing and training the ANN. The experimental apparatus and the geometry 

visualization within the Vised Software are illustrated in figure 2.a and 2.b, respectively. 

The starting point of the ANN used in this first phase was based on the architecture of the study 

by NUNES [2], with some necessary adjustments to adapt to the data sets used. The initial 

configuration consisted of a 3-layer network, with the first layer containing  128 neurons, using the 

hyperbolic activation function, the second layer containing 64 neurons, using the Gaussian 

complementary activation function, and the third layer containing  3 neurons, using the function of 

softmax activation. The model used a learning rate of 0.1 and 3600 epochs of training. Initialization 

of weights is done randomly by default by Keras. The production data set used were the spectra 

obtained experimentally from the 137Cs, 60Co and 152Eu nuclides. 

 

 

 

 

 

 

 

 

Figure 2: a) Experimental apparatus; b) Reproduction of the apparatus with Vised software  
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2.2. Second phase 

 

In this phase, the nuclide types (classes for ANN) of the ANN training and tests sets were 

expanded, in order to include a total of 24 distinct radionuclides (140Ba, 131I, 135I, 85mKr, 132Te, 133Xe, 

133mXe, 135Xe, 137Cs, 60Co, 241Am, 226Ra, 192Ir, 238Pu, 210Po, 252Cf, 238U, 235U, 40K, 232Th, 152Eu, 133Ba, 

57Co, 54Mn), whose spectra were obtained from simulation with the MCNP5. This inventory was 

selected based on the studies by CURZIO[14], who developed a radioactive plume dispersion 

analysis resulting from a simulated accident with a small PWR reactor and PEREIRA[15], which 

analyzes a hypothetical dirty bomb explosion at a large public event. The radionuclides stored in the 

laboratory of the Instituto Militar de Engenharia (IME) were kept in the inventory, namely 152Eu, 

133Ba, 57Co, 60Co and 54Mn, in addition to 137Cs, present in the inventory surveyed by CURZIO[14]. 

The experimentally obtained spectra of 137Cs, 60Co and 152Eu were again used as ANN production 

data. 

In this phase, the ANN configuration was started with the same final configuration of the first 

phase, which, when submitted to a new set of training data and tests, did not obtain satisfactory 

performance. A systematic evolution was carried out with alteration of several ANN parameters, 

having as indicators of improvement the curves of the loss and accuracy functions, as mentioned 

above. The final configuration obtained in this phase was an ANN with four layers, obtained by 

inserting a hidden layer before the output layer of the previous configuration, with 32 neurons and 

using the sigmoid activation function. In addition, hyper parameters such as learning rate, learning 

batch size [16], and the optimization algorithm were changed, the latter causing a significant 

improvement in the results, using ADAM[17] from this phase on. 
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3. RESULTS AND DISCUSSION 

 

The work had as its starting point the ANN architecture of the study by NUNES [2], differing in 

the application of the classifier, obtaining assertiveness similar to the work cited. Thus, a neural 

network capable of distinguishing between the spectra submitted to classification within the set of 

radionuclide spectra that composed the training base of the network was obtained. 

The comparison with the studies of VARLEY [3] and JHUNG et al.[4] shows that, like the 

aforementioned authors, this study shows the feasibility of using Artificial Neural Networks for the 

classifiers  implementation within the nuclear area. 

Next, the results obtained will be described, as well as the relevant discussions, referring to each 

experiment phase in the respective subsequent sections.  

  

3.1. First phase 

 

Once the experimental apparatus was defined and assembled, the energy calibration of the 

detection system was performed [18,19] with the nuclides 60Co, 152Eu and 137Cs. Figure 3 shows the 

visual comparison between the graphically superimposed experimental and simulated spectra for 

the defined experimental apparatus. 

A visual adhesion, illustrated in Figure 3, was observed between the experimental and simulated 

spectra for 3 used nuclides. However, there are some deviations between the overlapping spectra, 

which may require a detailed analysis in a future study. 

Once the simulation results were validated with the data obtained experimentally, the Neural 

Network used as the main point of the automated radionuclide classification system was 

parameterized. Thus, after using the analytical comparison to validate the computational simulation 

model, the simulation data, as well as the experimental spectra, were submitted to classification 

with the ANN configured in the first phase of the experiment. The loss and accuracy curves 

obtained from this classification are illustrated in Figure 4. The classification result is shown in 

table 2.  
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Figure 3: Comparison between experimental and simulated spectra  

for (a) 137Cs, (b) 60Co e (c) 152Eu. 
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Figure 4: Loss and accuracy function curves obtained in the first phase of the experiment. 

 

Table 2: Classification result obtained in the first phase. 

 Pertinence Relations 

Source 60Co 137Cs 152Eu 

60Co 9,96e-01 2,71e-03 7,83e-04 

137Cs 6,58e-04 9,98e-01 6,71e-04 

152Eu 7,47e-03 8,83e-03 9,83e-01 

 

3.2. Second phase 

 

The results obtained in the second phase of the experiment, with the four-layer ANN configured 

as described in section 2.2, relating to the curves of the loss and accuracy functions are illustrated in 

Figure 5. The result of the separation into classes for each nuclide is shown in the table 3. The 

pertinence relations with the other nuclides in the knowledge base were omitted as they were 

negligible. 
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Figure 5: Loss and accuracy function curves obtained in the second phase of the experiment.  

 

Table 3: Classification result obtained in the second phase. 

 Pertinence Relations 

Source 60Co 137Cs 152Eu 

60Co 9,99e-01 3,23e-08 2,25e-06 

137Cs 3,70e-08 9,99e-01 2,66e-06 

152Eu 5,01e-04 4,58e-05 9,90e-01 

 

It was possible to observe that the curves of the loss and accuracy functions quickly tended to 

zero and one respectively, over the training epochs, with the final loss being 1.5170 x 10-4 in the 

first phase and 2.335 x 10 -5 with respect to the second phase. In addition, all pertinence relations, 

obtained through the classification of nuclides used as production data, returned results above 0.98, 

which would perfectly suit a practical application of the study. 
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4. CONCLUSION 

 

The study carried out had as its main proposal to establish an automated classification model for 

radionuclides, based on the Artificial Neural Networks application and supervised machine 

learning. In fact, it was described how the application of ANN can produce viable results for the 

development of an automation technique, in order to meet this project requirement. 

Furthermore, having a path that can be developed in order to obtain a viable alternative to 

detectors with similar functionality, high cost and available only from international manufacturers, 

contributes to the strengthening of national industry and technology with regard to the applications 

of radiological defense. 

It should also be noted that the implementation of the ANNs in this study was carried out with 

free and open source technologies, such as the Python language, and the Keras and TensorFlow 

libraries, which brings the versatility needed to make the developed models part of a customized 

automation system . 

A continuation of this study may aim at an automation system with a core based on artificial 

intelligence, which can be configured, for example, to monitor the spectral signature of a specific 

type of nuclear installation, aiming at increasing its radiological safety. 

Another future study, derived from this work, would be the use of Deep Learning, as suggested 

in the study by JHUNG et al. [4], with the substantial increase of layers in the used neural network, 

which could serve as a work proposal whose objective would be to compare the results to be 

obtained with the results of the present study.  
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